• Title/Summary/Keyword: multi-cable

Search Result 281, Processing Time 0.029 seconds

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method (강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석)

  • Lee, Euntaek;Go, Gwangsoo;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

Influence of structural system measures on the dynamic characteristics of a multi-span cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Xie, Hongen;Song, Jianyong;Li, Wanheng
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.51-73
    • /
    • 2014
  • A three-dimensional finite element model for the Jiashao Bridge, the longest multi-span cable-stayed bridge in the world, is established using the commercial software package ANSYS. Dynamic characteristics of the bridge are analyzed and the effects of structural system measures including the rigid hinge, auxiliary piers and longitudinal constraints between the girders and side towers on the dynamic properties including modal frequency, mode shape and effective mass are studied by referring to the Jiashao Bridge. The analysis results reveal that: (i) the installation of the rigid hinge significantly reduces the modal frequency of the first symmetric lateral bending mode of bridge deck. Moreover, the rigid hinge significantly changes the mode shape and effective mass of the first symmetric torsional mode of bridge deck; (ii) the layout of the auxiliary piers in the side-spans has a limited effect on changing the modal frequencies, mode shapes and effective masses of global vibration modes; (iii) the employment of the longitudinal constraints significantly increases the modal frequencies of the vertical bending modes and lateral bending modes of bridge deck and have significant effects on changing the mode shapes of vertical bending modes and lateral bending modes of bridge deck. Moreover, the effective mass of the first anti-symmetric vertical bending of bridge deck in the longitudinal direction of the fully floating system is significantly larger than that of the partially constrained system and fully constrained system. The results obtained indicate that the structural system measures of the multi-span cable-stayed bridge have a great effect on the dynamic properties, which deserves special attention for seismic design and wind-resistant design of the multi-span cable-stayed bridge.

Geometric nonlinear analysis of steel structures with external pretension using the multi-noded cable element (다절점 케이블요소를 이용한 외부 긴장된 강구조 시스템의 기하학적 비선형해석)

  • Lee, Jun Seok;Kim, Moon Young;Han, Man Yop;Kim, Sung Bo;Kim, Nak Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.727-735
    • /
    • 2006
  • In this paper, a geometric nonlinear analysis procedure of the beam-column element including multi-noded cable element in extension of companion paper (Kim et al., 2005) is presented. First, a stiffness matrix was derived about the beam-column element that considers the second effect of the initial force supposing the curved shape at each time-step, with Hermitian polynomials as the shape function. Second, the multi-noded cable element was also subjected to the tangent stiffness matrix. To verify the geometric nonlinearity of this newly developed multi-noded cable-truss element, the Innovative Prestressed Support (IPS) system using this theory was analysed by geometric nonlinear method and the results were compared with those produced by linear analysis.

Modelling and Transient Analysis of a 3-Phase Multi-Layer HTS Coaxial Cable using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 3 상 다층 고온 초전도 케이블의 모델링 및 과도 해석)

  • Lee, Jun-Yeop;Lee, Seok-Ju;Park, Minwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Three-phase multi-layer high temperature superconducting coaxial (TPMHTSC) cable is being actively studied due to advantages such as the reduction of the amount of superconducting wire usage and the miniaturization of the cable. The electrical characteristics of TPMHTSC cables differ from those of conventional superconducting cables, so sufficient analysis is required to apply them to the actual system. In this paper, the authors modeled 22.9 kV, 60 MVA TPMHTSC cable and analyzed the transient characteristics using a PSCAD/EMTDC-based simulation. As a result, when a fault current flows in TPMHTSC cable, most of the fault current is bypassed through the copper former layers. At this time, the total cable temperature increased by about 5 K. Through this study, we can verify the reliability of the TPMHTSC cable against the transient state, and it can be helpful for the practical application of the cable in the future.

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van;Lee, Hak-Eun;Bui, Quoc-Tinh
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.583-605
    • /
    • 2012
  • This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

A Study on Dynaniic Analysis for Earthquake Design of cable-stayed Bridges (사장교의 내진설계를 위한 동적해석에 관한 연구)

  • 이진휴;이재영;이장춘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.103-115
    • /
    • 1994
  • The dynamic earthquake analysis of plane cable-stayed bridge structures was formulated and implemented into a computer program which analyzes plane cable-stayed bridge structu- res subjected to initial cable tensions, member dead and live loads and seismic loads. Cable-stayed bridges were modelled as multi-degrees of freedom systems with lumped- mass. Various earthquake responses such as dynamic deflection, bending moment, shear force and cable tension were investigated by the dynamic analyses in the form of the time history analysis. The time history analysis was based on the mode superposition method. The study revealed that Fan-l type cable-syayed bridges is generally superior to other types for the earthquake proof even though aspects of deflection and section force of each type presents respective advantages and disadvantages. The study provided a method to design the sections of cable-stayed bridges under seismic loads with various design parameters related to structural types. The study is expected to be useful for effective design of cable-stayed bridges with conside- ration of earthquake.

  • PDF

High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor

  • Kim, Do-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.214-222
    • /
    • 2013
  • This paper proposes a high efficiency step-down flyback converter using a coaxial-cable coupled-inductor which has a higher primary-secondary flux linkage than sandwich winding transformers. The structure of the two-winding coaxial cable transformer is described, and the coupling coefficient of the coaxial cable transformer and that of a sandwich winding transformer are compared. A circuit model of the proposed transformer is also obtained from the frequency-response curves of the secondary short-circuit and of the secondary open-circuit. Finally, the performance of the proposed transformer is validated by the experimental results from a 35W single-output flyback converter prototype. In addition, the proposed two-winding coaxial transformer is extended to a multiple winding coaxial application. For the performance evaluation of the extended version, 35W multi-output hardware prototype of the DC-DC flyback converter was tested.

Mode identifiability of a multi-span cable-stayed bridge utilizing stabilization diagram and singular values

  • Goi, Y.;Kim, C.W.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.391-411
    • /
    • 2016
  • This study investigates the mode identifiability of a multi-span cable-stayed bridge in terms of a benchmark study using stabilization diagrams of a system model identified using stochastic subspace identification (SSI). Cumulative contribution ratios (CCRs) estimated from singular values of system models under different wind conditions were also considered. Observations revealed that wind speed might influence the mode identifiability of a specific mode of a cable-stayed bridge. Moreover the cumulative contribution ratio showed that the time histories monitored during strong winds, such as those of a typhoon, can be modeled with less system order than under weak winds. The blind data Acc 1 and Acc 2 were categorized as data obtained under a typhoon. Blind data Acc 3 and Acc 4 were categorized as data obtained under wind conditions of critical wind speeds around 7.5 m/s. Finally, blind data Acc 5 and Acc 6 were categorized as data measured under weak wind conditions.

Theoretical Evaluation of Degradation in Superconducting Multistrands for AC Use (교류용초전도연선의 교류전류열화현상의 이론적 검토)

  • Oh, Bong-Hwan;Nah, Wan-Soo;Oh, Sang-Soo;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.76-78
    • /
    • 1993
  • When an alternating current is supplied to a super-conducting multi-stranded cable, the quench current value of the cable was observed to be less than the simple summation of individual quench current value of each strand. One of the causes for such a degradation was attributed to the nonuniform of the current distribution in multi-stranded cable due to magnetic mutual coupling among the strands. The degradation of the superconducting cable is evaluated theoretically by taking into account the magnetic coupling among the strands.

  • PDF