• Title/Summary/Keyword: multi-body problem

Search Result 114, Processing Time 0.027 seconds

Supporting Reality and Support System Improvement for the Small and Medium Size Enterprises (중소기업 지원실태와 지원체계 개선방안)

  • Lee, Jae-Hyun;Ko, Seung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.333-341
    • /
    • 2009
  • This study was undertaken for Korean small and medium size enterprises(SME) support policy that conduct to 10 supporting sector. As a result of analysis, this study found out similarity and duplication for SME support policy under the influence of that support system and supporting body had a problem with complexity and multi-function. Therefore, the implication of this study is that typology analysis of supporting reality and support system improvement for the SME

A study on the Planning of the Kindergarten attached to the Elementary School (초등학교 병설유치원의 사용실태에 관한 조사연구)

  • Kang, Man-Ho;Jeong, Joo-Seung;Joo, Seok-Joong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.1
    • /
    • pp.39-46
    • /
    • 2004
  • The objective of this study is to propose the architectural basic data for the planning of kindergarten attached to the elementary school. For this study, we selected and investigated 23kindergartens in Gwangju city. The results of this study are as follows. 1) The elementary school in separated style had the advantage of securing educational space and reducing interference with students of elementary school. But it had the problem in using the facilities of elementary school. So we have to consider the kindergarten to be located near by dinning room, multi-purpose hall. 2) Concentrating the entrance, it makes the inside and outside space use easily. For the actual use, we have to establish facilities for convenience in outer-space. 3) For each room, we suggest guides as follow. The classroom and the playroom have to be combined for flexibility and supervision. In the planning of toilet, it must have sliding door for confirm the inside situation and reasonable height partition to consider the student's body-size. The shape of teacher's room must be open-type for supervising children but protect the entry of children. There is consideration for the material room and the sleeping room for all-day-long class.

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode- (차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드-)

  • 이성범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

The Function of Computer Utilization in Educating and Researching Ocean Engineering Problems

  • Koo, Weon-Cheol;Kim, Moo-Hyun;Ryu, Sam
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • Nowadays, the computational capability and graphical power based on PCs increase very rapidly every year. As a result, the complicated engineering or scientific problems that could have only been handled by supercomputers a couple of decades ago can now be routinely run on PCs. Besides, the PCs can be assembled in parallel to increase its computational capability theoretically without limitation. The Web-based interface and communication tools are also being enhanced very rapidly and the real-time distance learning (E-Learning) and project cooperation on web get increasing attention. Using the-state-of-the-art computational method, a number of complicated and computationally intensive problems are being solved by PCs. The results can be well demonstrated on screen by graphics and animation tools. Those examples include the simulations of fully nonlinear waves, their interactions with floating bodies, global-motion analysis of multi-unit floating production system including complicated mooring lines and risers. Several examples will be presented in this regard. Also, Web and java-applet based educational tools have been developed at Texas A&M University for better understanding of waves and wave-body interactions. The background and examples of such Web-based educational tools published in Kim et al. (2003) are briefly introduced here.

A parametric study of bolt-nut joints by the method of finite element contact analysis (유한 요소 접촉 해석법에 의한 나사 체결부 설계 개선에 관한 연구)

  • 이병채;김영곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.353-361
    • /
    • 1989
  • A parametric study of load distribution in bolt-nut joints is performed by the method of finite element contact analysis. The contacting surface is assumed unbonded and frictionless. Multi-body contact analysis is performed in elastic region under the assumption of axi-symmetric stress state. Load acting on the first thread from the fastened plate is much greater than that on the other threads in the standard setting. But the load distribution is shown to be improved by making the center of contact force acting on the nut surface move outwards. Such a modification is possible by enlarging the gap between bolt shank and fastened plate or by inserting suitable washers. Shape modification of the standard nut by the making a groove and a step on the nut surface is also suggested, which results in almost uniform load distribution and considerable decrease in the maximum stress of the joint.

Motion Planning and Control of Wheel-legged Robot for Obstacle Crossing (휠-다리 로봇의 장애물극복 모션 계획 및 제어 방법)

  • Jeong, Soonkyu;Won, Mooncheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.500-507
    • /
    • 2022
  • In this study, a motion planning method based on the integer representation of contact status between wheels and the ground is proposed for planning swing motion of a 6×6 wheel-legged robot to cross large obstacles and gaps. Wheel-legged robots can drive on a flat road by wheels and overcome large obstacles by legs. Autonomously crossing large obstacles requires the robot to perform complex motion planning of multi-contacts and wheel-rolling at the same time. The lift-off and touch-down status of wheels and the trajectories of legs should be carefully planned to avoid collision between the robot body and the obstacle. To address this issue, we propose a planning method for swing motion of robot legs. It combines an integer representation of discrete contact status and a trajectory optimization based on the direct collocation method, which results in a mixed-integer nonlinear programming (MINLP) problem. The planned motion is used to control the joint angles of the articulated legs. The proposed method is verified by the MuJoCo simulation and shows that over 95% and 83% success rate when the height of vertical obstacles and the length of gaps are equal to or less than 1.68 times of the wheel radius and 1.44 times of the wheel diameter, respectively.

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF