• Title/Summary/Keyword: multi-body problem

Search Result 114, Processing Time 0.023 seconds

Field Applicability Evaluation of Monotype Load Cell for Load-Distributing Anchor (하중 분산형 앵커 내하체에 대한 모노타입 하중계의 현장 적용성 평가)

  • Yong-Jae Song;Kang-Il Lee;Yong-Chai Chang;Sang-Yong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.3
    • /
    • pp.23-30
    • /
    • 2024
  • According to the method of settling the construction structure on the ground to keep the structure safe, the ground anchor method is divided into a load-distributing anchor and a general anchor. Recently, the application of load-distributed anchors, which show a large degree of recognition by anchors, is increasing in the field, but the problem of field applicability is also caused. The load-distributed anchor fixes the tensile force to each section of the lecture line and applies it, causing a problem of asymmetric loads in which the maximum tensile force size of each settlement site differs due to the length difference of the anchor body. Therefore, in this study, as a quality management method according to the asymmetric load of anchors, a mono-type load cell that can measure the load for each lecture line of a load-distributed anchor was developed, and the field applicability was analyzed by comparing and analyzing the measurement results of the existing multi-type load cell and mono-type load cell. As a result of the study, the multi-type load cell had no choice but to estimate the working load for each inner body, so it was impossible for the load-distributed anchor to manage it according to the generation of asymmetric loads for each lecture line. However, in the case of a mono-type load cell the load was measured for each inner body and for each lecture line, regardless of ground conditions and construction conditions, and thus the load value was measured for each lecture line, enabling safety management and construction management according to the occurrence of asymmetric loads.

The establishment of IB-SEM numerical method and verification of fluid-solid interaction

  • Wang, Jing;Li, Shu-cai;Mao, Xuerui;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1161-1171
    • /
    • 2018
  • The interaction between particles and fluid was investigated by IB-SEM numerical method which is a combination of combing the spectral/hp element method and the rigid immersed boundary method. The accuracy of this numerical method was verified based on the computed results with the traditional body-fitted mesh in numerical simulation of the flow through the cylinder. Then the governing equations of particles motion and contact in fluid are constructed. The movement of the particles and the interaction between the fluid and the particles are investigated. This method avoided the problem of low computational efficiency and error caused by the re-division of the grid when the solids moved. Finally, the movement simulation of multi particles in the fluid was carried out, which can provide a completely new numerical simulation method.

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Fourth Report) : Application to Integrated CAD and CAE System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제4보) : CAD와 CAE의 통합 시스템에의 적용)

  • Nahm, Yoon-Eui;Inoue, Masato;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.181-187
    • /
    • 2012
  • Various computer-based simulation tools such as 3D-CAD and CAE systems are widely used to design automotive body structure at the early phase of design. Designers must search the optimal solution that satisfies a number of performance requirements by using their tools and a trial-and-error approach. In the previous three reports, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple side-door impact beam design problem and real vehicle side-door structure design. This report presents the development of integrated 3D-CAD and CAE system, and the applicability of our proposal for obtaining the multi-objective satisfactory design solutions by applying to an automotive front-side frame.

Manufacture of Asymmetric Drone X8 having 3-type Modification Capability (세가지 형태로 변신이 가능한 비대칭 X8 무인비행로봇의 제작)

  • Jeong, Jin-Hyuk;Ha, Seong-Woo;Yun, Byeung-Mo;Kim, Kyung-Ho;Huh, Kyung-Moo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1092-1097
    • /
    • 2014
  • Unmanned flying robots have been used recently in many difficult situations. One of the major issues in this area is the problem of how long these unmanned flying robots can perform a given task successfully. For this, the development of a light body and high-efficiency power supply has been executed widely, but we do not as yet have the complete solution. In this paper, we propose a form of Multi-Copter X8, which can transform into other types to further improve these problems. The proposed robot has a 3-type modification capability, which can produce a more enhanced energy saving effect by reducing power consumption.

A Study on Multi-Vehicle Control of Electro Active Polymer Actuator based on Embedded System using Adaptive Fuzzy Controller (Adaptive Fuzzy 제어기를 이용한 Embedded 시스템 기반의 기능성 고분자 구동체의 이중제어에 관한 연구)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.307-310
    • /
    • 1997
  • In case of environment requiring safety such as human body and requiring flexible shape, a conventional mechanical actuator system does not satisfy requirement. Therefore, in order to solve this problem, a research of various smart material such as EAP (Electro Active Polymer), EAC (Electro Active Ceramic) and SMA (Shape Memory Alloy) is in progress. Recently, the highest preferring material among various smart material is EP (Electrostictive Polymer), because it has very fast response time, poerful force and large displacement. The previous researches have been studied properties of polymer and simple control, but present researches are studied a polymer actuator. An EP (Electostrictive Polymer) actuator has properties which change variably as shape and environmental condition. Therefore, in order to coincide with a user's purpose, it is important not only to decide a shape of actuator and mechanical design but also to investigate a efficient controller. In this paper, we constructed the control logic with an adaptive fuvy algorithm which depends on the physical properties of EP that has a dielectric constant depending on time.

  • PDF

Analysis of temperature monitoring data for leakage detection of earth dam (흙댐의 누수구역 판별을 위한 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Seo, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.39-45
    • /
    • 2008
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect (내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석)

  • Hong, Seokjin;Kim, Donghyun;Kang, Sinwook;Kang, Keumseok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.461-467
    • /
    • 2016
  • In order to install the floating transport type wind-turbine foundation, water pumping is used to sink the foundation. During this process, its mass and center of gravity, and buoyancy center become continuously changed so that the dynamic stability of the floating foundation become unstable. Dynamic stability analysis of the floating foundation is a complex problem since it should take into account not only the environmental wave, wind, and current loads but also its weight change effect simultaneously considering six-degree-of-freedom motion. In this study, advanced numerical method based on the coupled computational fluid dynamics (CFD) and multi-body dynamics (MBD) approach has been applied to the dynamic stability analysis of the floating foundation. The sloshing effect of foundation internal water is also considered and the floating dynamic characteristics are numerically investigated in detail.

Analytical Model for the Analysis of Pop-up Deviation of the Trunk Lid with Torsion Bar (토션바 트렁크의 팝업량 산포 분석을 위한 해석모델)

  • Son, Sungmin;Yun, Jaedeuk;Jung, Yoongho;Yim, Hyangsoo;Jang, Kookjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • A four-link mechanism consisting of torsion bars is used for opening the trunk lid in most midsize sedans. When the weight of the lid is in equilibrium with the spring force exerted by torsion bars, the lid stops opening at a pop-up height. However, the actual pop-up height has large deviations from the specified height even with the same parts in the same car model, which leads to quality issues. Automotive manufacturers have experienced this deviation problem despite much effort to resolve it. In this research, we developed a multi-body dynamics model for the analysis of pop-up deviation of a trunk lid with torsion bars, which can simulate the actual pop-up motion of the trunk lid by considering kinematic constraints of the motion and friction forces in joints. We could also determine the most important factor that governs the pop-up height by sensitivity analysis of all parts. The developed system can be used for the analysis of other trunk lid systems to control the tolerance of parts.

Optimal Design of Wind Turbine Tower Model Using Reliability-Based Design Optimization (신뢰성 기반 최적설계를 이용한 풍력 발전기 타워 최적 설계)

  • Park, Yong-Hui;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.575-584
    • /
    • 2014
  • In this study, the NREL 5 MW wind turbine tower model was optimized according to the multi-body dynamics and reliability-based design. The mathematical model was defined as a link-joint system including dynamic characteristics derived from Timoshenko's beam theory. For the optimization problem, the sensitivities to variations in the tower thicknesses and inner and outer diameters were acquired and arranged in terms of safety and efficiency according to bending stress and buckling standards. An optimal design was calculated with the advanced first-order second moment method and used to define a finite element model for validation. The finite element model was simulated by static analysis. The relationship between the multi-body dynamic and finite element method throughout the process was investigated, and the optimal model, which had high endurance despite its low mass, was determined.

Development of Emotion Recognition Model based on Multi Layer Perceptron (MLP에 기반한 감정인식 모델 개발)

  • Lee Dong-Hoon;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.372-377
    • /
    • 2006
  • In this paper, we propose sensibility recognition model that recognize user's sensibility using brain waves. Method to acquire quantitative data of brain waves including priority living body data or sensitivity data to recognize user's sensitivity need and pattern recognition techniques to examine closely present user's sensitivity state through next acquired brain waves becomes problem that is important. In this paper, we used pattern recognition techniques to use Multi Layer Perceptron (MLP) that is pattern recognition techniques that recognize user's sensibility state through brain waves. We measures several subject's emotion brain waves in specification space for an experiment of sensibility recognition model's which propose in this paper and we made a emotion DB by the meaning data that made of concentration or stability by the brain waves measured. The model recognizes new user's sensibility by the user's brain waves after study by sensibility recognition model which propose in this paper to emotion DB. Finally, we estimates the performance of sensibility recognition model which used brain waves as that measure the change of recognition rate by the number of subjects and a number of hidden nodes.