• Title/Summary/Keyword: multi-body problem

Search Result 114, Processing Time 0.032 seconds

ATTITUDE AND CONFIGURATION CONTROL OF FLEXIBLE MULTI-BODY SPACECRAFT

  • Choi, Sung-Ki;Jone, E.;Cochran, Jr.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2002
  • Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems ad-dressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

Analysis of a Flexible Multi-body System with Over-constraints (여유구속을 갖는 유연체 기계시스템의 동역학 해석)

  • Seo, Jong-Hwi;Park, Tae-Won;Chae, Jang-Soo;Seo, Hyun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.874-880
    • /
    • 2003
  • Many mechanical systems are over-constrained if only rigid bodies are used to model the system. One example of such system is a satellite system with solar panels. To avoid this over-constrained problem, solar panels can be modeled as flexible bodies. The CMS(Component Mode Synthesis) method is widely used to analyze the flexible multi-body system because it can considerably approximate the deformation of the flexible bodies using small number of well-selected mode. However, it is very difficult to decide the boundary condition and the selection of modes. In this paper, the methods for mode synthesis and setting the boundary condition are presented to analyze the flexible multi-body system with over-constraints. Finally, the reliability of proposed method is verified by solar panel's deployment test.

  • PDF

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

Unified Theory for the Radiation Problem of Multiple Slender Bodies

  • Kim, Yong-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.2
    • /
    • pp.1-19
    • /
    • 2003
  • This paper introduces a unified theory for the radiation problem of adjacent multiple floating bodies. The particular case of interest is the multiple slender bodies that their centerlines are parallel. The infinite-and finite-depth unified theories for the single-body problem are extended to solve each sub-problem of multiple bodies. The present method is valid for deep water and moderate water depth, and applicable for individually floating bodies as well as multimaran-type vehicles. For the validation of the present method, the heave and pitch hydrodynamic coefficients for two adjacent ships are compared with the results of a three-dimensional method, and an excellent agreement is shown. The application includes the hydrodynamic coefficients and motion RAOs of four trimarans which have different longitudinal and transverse arrangements for sidehulls.

Continuous Variable을 갖는 Mean Field Annealing과 그 응용

  • Lee, Gyeong-Hui;Jo, Gwang-Su;Lee, Won-Don
    • ETRI Journal
    • /
    • v.14 no.3
    • /
    • pp.67-74
    • /
    • 1992
  • Discrete variable을 갖는 Mean Field Theory(MFT) neural network은 이미 많은 combinatorial optimization 문제에 적용되어져 왔다. 본 논문에서는 이를 확장하여 continuous variable을 갖는 mean field annealing을 제안하고, 이러한 network에서 integral로 표현되는 spin average를 mean field에 기초하여 어렵지 않게 구할 수 있는 one-variable stochastic simulated annealing을 제안하였다. 이런 방법으로 multi-body problem을 single-body problem으로 바꿀 수 있었다. 또한 이 방법을 이용한 응용으로서 통계학에서 잘 알려진 문제중의 하나인 quantification analysis 문제에 적용하여 타당성을 보였다.

  • PDF

A Comparison study on the relationship between the Self-reported Voice Problem and Body Mass Index (자가 음성평가와 체질량지수의 특성 비교)

  • Lee, Inae;Hwang, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1330-1334
    • /
    • 2013
  • The purpose of this study was to analyze the association between self-reported voice problem and body mass index. Data were collected from the 5th Korea National Health and Nutritional Examination Survey (2010) from 5,811 subjects(2,503 men and 3,308 women) aged 19 years and olders. chi-square, t-test and multi-nominal logistic regression analysis were used that to compare self-reported voice problem and variable(age, sex, hight, weight, waist measurement, body mass index). body mass index(OR=1.028, 95% CI: 1.003-1.056) was independently associated with self-reported voice problem(p<0.031). also over weight-two step obesity (OR=1.765, 95% CI: 1.036-3.006) were independently associated with self-reported voice problem(p<0.036). The results of comparison verified that body mass index are valuable self-reported voice problem of risk factor. when the evaluation were conducted, what was considered body mass index is needed.

Analysis Method for Multi-Flexible-Body Dynamics Solver in RecurDyn (RecurDyn 솔버에 적용되어 있는 유연 다물체 동역학에 대한 해석기술)

  • Choi, Juhwan;Choi, Jin Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • The analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of the computational dynamics. This technique has been developed and improved in RecurDyn solver. This paper reviews the formulation which is applied in the RecurDyn solver. Basically, in order to solve the multi-flexible-body dynamics problem, an incremental finite element formulation using a corotational procedure is used. In particular, in order to solve the rigid and flexible bodies together, a constraint equation between a rigid body and a flexible body is applied, in which a virtual body and a flexible body joint are introduced.

Structural Dynamic Optimization of Diesel Generator systems Using Genetic Algorithm(GA) (유전자 알고리즘을 이용한 선박용 디젤발전기 시스템의 동특성 해석 및 최적화)

  • 이영우;성활경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2000
  • For multi-body dynamic problems. especially coalescent eigenvalue problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique for structural dynamic modification using a mode modification and homologous structures design method with Genetic Algorithm(GA). In this work, the homologous structure of the resiliently mounted multi-body for marine diesel generator systems is studied and the problem is treated as a combinational optimization problem using the GA. In GA formulation, fitness is defined based on penalty function approach. That include homology, allowable stress and minimum weight of common plate.

  • PDF

Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory (비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석)

  • 박찬경;김석원;김회선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF