• Title/Summary/Keyword: multi-Clouds

Search Result 82, Processing Time 0.027 seconds

Daylight background radiation modeling for the system of ocean-atmosphere with multi-layer clouds

  • Sushkevich, Tamara A.;Strelkov, Sergey A.;Volkovich, Alexander N.;Kulikov, Alexey K.;Maksakova, Sveta V.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.680-683
    • /
    • 2006
  • A one-dimensional planar model is considered of the atmosphere with multi-layer clouds illuminated by a mono-directional parallel flux of solar radiation. A new approach is proposed to radiation transfer modeling and daylight background formation for the atmosphere with such clouds that is represented as a heterogeneous multi-layer system each layer of which is described by different optical characteristics. The influence functions of each layer are determined by solutions of the radiation transfer boundary problem with an external monodirectional wide flux while the contribution of multiple scattering and absorption in the layer is taking into account.

  • PDF

Experience in Practical Implementation of Abstraction Interface for Integrated Cloud Resource Management on Multi-Clouds

  • Kim, Huioon;Kim, Hyounggyu;Chun, Kyungwon;Chung, Youngjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.18-38
    • /
    • 2017
  • Infrastructure-as-a-Service (IaaS) clouds provide infrastructure as a pool of virtual resources, and the public IaaS clouds, e.g. Amazon Web Service (AWS) and private IaaS cloud toolkits, e.g. OpenStack, CloudStack, etc. provide their own application programming interfaces (APIs) for managing the cloud resources they offer. The heterogeneity of the APIs, however, makes it difficult to access and use the multiple cloud services concurrently and collectively. In this paper, we explore previous efforts to solve this problem and present our own implementation of an integrated cloud API, which can make it possible to access and use multiple clouds collectively in a uniform way. The implemented API provides a RESTful access and hides underlying cloud infrastructures from users or applications. We show the implementation details of the integrated API and performance evaluation of it comparing the proprietary APIs based on our cloud testbed. From the evaluation results, we could conclude that the overhead imposed by our interface is negligibly small and can be successfully used for multi-cloud access.

Analysis of Cloud Properties Related to Yeongdong Heavy Snow Using the MODIS Cloud Product (MODIS 구름 산출물을 이용한 영동대설 관련 구름 특성의 분석)

  • Ahn, Bo-Young;Cho, Kuh-Hee;Lee, Jeong-Soon;Lee, Kyu-Tae;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.71-87
    • /
    • 2007
  • In this study, 14 heavy snow events in Yeongdong area which are local phenomena are analyzed using MODIS cloud products provided from NASA/GSFC. The clouds of Yeongdong area at observed at specific time by MODIS are classified into A, B, C Types, based on the characteristic of cloud properties: cloud top temperature, cloud optical thickness, Effective Particle Radius, and Cloud Particle Phase. The analysis of relations between cloud properties and precipitation amount for each cloud type show that there are statistically significant correlations between Cloud Optical Thickness and precipitation amount for both A and B type and also significant correlation is found between Cloud Top Temperature and precipitation amount for A type. However, for C type there is not any significant correlations between cloud properties and precipitation amount. A-type clouds are mainly lower stratus clouds with small-size droplet, which may be formed under the low level cold advection derived synoptically in the East sea. B-type clouds are developed cumuliform clouds, which are closely related to the low pressure center developing over the East sea. On the other hand, C-type clouds are likely multi-layer clouds, which make satellite observation difficult due to covering of high clouds over low level clouds directly related with Yeongdong heavy snow. It is, therefore, concluded that MODIS cloud products may be useful except the multi-layer clouds for understanding the mechanism of heavy snow and estimating the precipitation amount from satellite data in the case of Yeongdong heavy snow.

Multi Point Cloud Integration based on Observation Vectors between Stereo Images (스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합)

  • Yoon, Wansang;Kim, Han-gyeol;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.727-736
    • /
    • 2019
  • In this paper, we present how to create a point cloud for a target area using multiple unmanned aerial vehicle images and to remove the gaps and overlapping points between datasets. For this purpose, first, IBA (Incremental Bundle Adjustment) technique was applied to correct the position and attitude of UAV platform. We generate a point cloud by using MDR (Multi-Dimensional Relaxation) matching technique. Next, we register point clouds based on observation vectors between stereo images by doing this we remove gaps between point clouds which are generated from different stereo pairs. Finally, we applied an occupancy grids based integration algorithm to remove duplicated points to create an integrated point cloud. The experiments were performed using UAV images, and our experiments show that it is possible to remove gaps and duplicate points between point clouds generated from different stereo pairs.

DENSE MOLECULAR CLOUDS IN THE GALACTIC CENTER REGION II. H13CN (J=1-0) DATA AND PHYSICAL PROPERTIES OF THE CLOUDS

  • Lee, Chang-Won;Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.4
    • /
    • pp.271-282
    • /
    • 2003
  • We present results of a $H^{13}CN$ J=1-0 mapping survey of molecular clouds toward the Galactic Center (GC) region of $-1.6^{\circ}{\le}{\iota}{\le}2^{\circ}$ and $-0.23^{\circ}{\le}b{\le}0.30^{\circ}$ with 2' grid resolution. The $H^{13}CN$ emissions show similar distribution and velocity structures to those of the $H^{12}CN$ emissions, but are found to better trace the feature saturated with $H^{12}CN$ (1-0). The bright components among multi-components of $H^{12}CN$ line profiles usually appear in the $H^{13}CN$ line while most of the dynamically forbidden, weak $H^{12}CN$ components are seldom detected in the $H^{13}CN$ line. We also present results of other complementary observations in $^{12}CO$ (J=1-0) and $^{13}CO$ (J=1-0) lines to estimate physical quantities of the GC clouds, such as fractional abundance of HCN isotopes and mass of the GC cloud complexes. We confirm that the GC has very rich chemistry. The overall fractional abundance of $H^{12}CN$ and $H^{13}CN$ relative to $H_2$ in the GC region is found to be significantly higher than those of any other regions, such as star forming region and dark cloud. Especially cloud complexes nearer to the GC tend to have various higher abundance of HCN. Total mass of the HCN molecular clouds within $[{\iota}]{\le}6^{\circ}$ is estimated to be ${\~}2 {\times}10^7\;M_{\bigodot}$ using the abundances of HCN isotopes, which is fairly consistent with previous other estimates. Masses of four main complexes in the GC range from a few $10^5$ to ${\~}10^7\;M_{\bigodot}$ All the HCN spectra with multi-components for the four main cloud complexes were investigated to compare the line widths of the complexes. The largest mode (45 km $s^{-1}$) of the FWHM distributions among the complexes is in the Clump 2. The value of the mode tends to be smaller at the farther complexes from the GC.

3D Reconstruction of an Indoor Scene Using Depth and Color Images (깊이 및 컬러 영상을 이용한 실내환경의 3D 복원)

  • Kim, Se-Hwan;Woo, Woon-Tack
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2006
  • In this paper, we propose a novel method for 3D reconstruction of an indoor scene using a multi-view camera. Until now, numerous disparity estimation algorithms have been developed with their own pros and cons. Thus, we may be given various sorts of depth images. In this paper, we deal with the generation of a 3D surface using several 3D point clouds acquired from a generic multi-view camera. Firstly, a 3D point cloud is estimated based on spatio-temporal property of several 3D point clouds. Secondly, the evaluated 3D point clouds, acquired from two viewpoints, are projected onto the same image plane to find correspondences, and registration is conducted through minimizing errors. Finally, a surface is created by fine-tuning 3D coordinates of point clouds, acquired from several viewpoints. The proposed method reduces the computational complexity by searching for corresponding points in 2D image plane, and is carried out effectively even if the precision of 3D point cloud is relatively low by exploiting the correlation with the neighborhood. Furthermore, it is possible to reconstruct an indoor environment by depth and color images on several position by using the multi-view camera. The reconstructed model can be adopted for interaction with as well as navigation in a virtual environment, and Mediated Reality (MR) applications.

  • PDF

Image Registration of Cloudy Pushbroom Scanner Images (구름을 포함한 푸쉬브룸 스캐너 영상의 밴드간 상호등록)

  • Lee, Won-Hee;Yu, Su-Hong;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • Since PAN(panchromatic) and MS(multispectral) imagery of pushbroom scanner have the offset between PAN and MS CCD(charge coupled device) in the focal plane, PAN and MS images are acquired at different time and angle. Since clouds are fast moving objects, they should lead mis-registration problem with wrong matching points on clouds. The registration of cloudy imagery to recognize and remove the contamination of clouds can be categorized into three classes: (1) cloud is considered as nose and removed (2) employing multi-spectral imagery (3) using multi-temporal imagery. In this paper, method (1) and (3) are implemented and analysed with cloudy pushbroom scanner images.

Parallel task scheduling under multi-Clouds

  • Hao, Yongsheng;Xia, Mandan;Wen, Na;Hou, Rongtao;Deng, Hua;Wang, Lina;Wang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.39-60
    • /
    • 2017
  • In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks are executed concurrently on different VMs (Visual machines), where each task of the job will be executed synchronously. The goal of scheduling is to reduce the execution time and to keep the fairness between jobs to prevent some jobs from waiting more time than others. We propose a Cloud model which has multiple Clouds, and under this model, jobs are in different lists according to the waiting time of the jobs and every job has different parallelism. At the same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS (Largest Job First Served) and Fair are executed to test the performance of those methods. Metrics about the waiting time, and response time are used to test the performance of ZOMT. The simulation results have shown that ZOMT not only reduces waiting time and response time, but also provides fairness to jobs.

A Security-Enhanced Identity-Based Batch Provable Data Possession Scheme for Big Data Storage

  • Zhao, Jining;Xu, Chunxiang;Chen, Kefei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4576-4598
    • /
    • 2018
  • In big data age, flexible and affordable cloud storage service greatly enhances productivity for enterprises and individuals, but spontaneously has their outsourced data susceptible to integrity breaches. Provable Data Possession (PDP) as a critical technology, could enable data owners to efficiently verify cloud data integrity, without downloading entire copy. To address challenging integrity problem on multiple clouds for multiple owners, an identity-based batch PDP scheme was presented in ProvSec 2016, which attempted to eliminate public key certificate management issue and reduce computation overheads in a secure and batch method. In this paper, we firstly demonstrate this scheme is insecure so that any clouds who have outsourced data deleted or modified, could efficiently pass integrity verification, simply by utilizing two arbitrary block-tag pairs of one data owner. Specifically, malicious clouds are able to fabricate integrity proofs by 1) universally forging valid tags and 2) recovering data owners' private keys. Secondly, to enhance the security, we propose an improved scheme to withstand these attacks, and prove its security with CDH assumption under random oracle model. Finally, based on simulations and overheads analysis, our batch scheme demonstrates better efficiency compared to an identity based multi-cloud PDP with single owner effort.