• Title/Summary/Keyword: multi wave length

Search Result 69, Processing Time 0.026 seconds

Top and Bottom Symmetrical Loop Antenna for Multi-media Devices (멀티미디어단말기용 상하대칭 루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2011
  • The paper is for top and bottom symmetrical phase controlled loop antenna using for multi-media devices. We developed a top and bottom phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^{\circ}$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern in $180^{\circ}$ become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a top and bottom symmetrical architecture loop pattern that bas a $180^{\circ}$ wave length in each layer. Top and bottom each layer bas a U form pattern separated $90^{\circ}$ wave length each other. This architecture cause a well balanced electro-magnetic flow control that acquired wide bandwidth resonance response in loop pattern antenna. In experiment, we designed a WCDMA mobile multi-media antenna in $40mm{\times}6mm$ area thickness 0.2mm, in that passive experiment the radiation efficiency is over 50% and over 0dBi radiation average gain was acquired, in the active experiment in real multi-media device we acquired -4dBi average gain and 43% transmit/receive efficiency.

Effects of High-harmonic Components on the Rayleigh Indices in Multi-mode Thermo-acoustic Combustion Instability

  • Song, Chang Geun;Yoon, Jisu;Yoon, Youngbin;Kim, Young Jin;Lee, Min Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.518-525
    • /
    • 2016
  • This paper presents the characteristics of non-fundamental multi-mode combustion instability and the effects of high-harmonic components on the Rayleigh criterion. Phenomenological observations of multi-harmonic-mode dynamic pressure waves regarding the intensity of harmonic components and the source of wave distortion have been explained by introducing examples of second- and third-order harmonics at various amplitudes. The amplitude and order of the harmonic components distorted the wave shapes, including the peak and the amplitude, of the dynamic pressure and heat release, and consequently the temporal Rayleigh index and its integrals. A cause-and-effect analysis was used to identify the root causes of the phase delay and the amplification of the Rayleigh index. From this analysis, the skewness of the dynamic pressure turned out to be a major source in determining whether multi-mode instability is driving or damping, as well as in optimizing the combustor design, such as the mixing length and the combustor length, to avoid unstable regions. The results can be used to minimize errors in predicting combustion instability in cases of high multi-mode combustion instability. In the future, the amount of research and the number of applications will increase because new fuels, such as fast-burning syngases, are prone to generating multi-mode instabilities.

Three-dimensional Detoantion Wave Dynamics in a Circular Tube (원형 관 내부에서의 3차원 데토네이션 파의 동적모형)

  • Cho, Deok-Rae;Won, Soo-Hee;Shin, Jae-Ryul;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.68-75
    • /
    • 2008
  • The three-dimensional structure of detonation wave propagating in a circular tube was investigated using a parallel computational code developed previously. A series of parametric study for a circular tube of a fixed diameter gave the formation mechanism of the detonation cell structures depending on pre-exponential factor, k. The unsteady results in three-dimension showed the mechanisms of two, three and four cell mode of detonation wave front structures. The detonation cell number was increased but cell width and length were decreased with increased pre-exponential factor k. In the all multi-cell mode, the detonation wave structure and smoked-foil records on the wall are made by the moving of transverse waves. The detonation wave front structures have the regular polygon and windmill shapes periodically.

Synthetic Strategy and Optical Property Characterization of Complex Nanorods: Plasmon Wave Guide and Solar Cell

  • Park, Sung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.111-111
    • /
    • 2012
  • In this talk, we represent a novel approach to investigating intra-nanorod surface plasmon coupling with control over block compositions. The multi-component rod-like nanostructures, which consist of optically active components (Au and Ag) and optically less active component (for example, Ni) in UV-vis-NIR spectral window, showed interesting optical response depending on each block length and the total length of the structure. By controlling the composition and relative lengths of the blocks that comprise these structures, we can tailor the overall optical properties. Depending on the relative fraction of Au and Ag blocks, the intensity of the transverse modes varied without noticeable peak shifts. However, the strong intraparticle surface plasmon coupling resulted in the collective appearance of longitudinal LSP modes, including higher-order modes. The experimental observations were confirmed by theoretical calculation, using a discrete dipole approximation method. In addition, we will briefly discuss how single nanorod solar cells can be synthesized by using by using electrochemical deposition and AAO hard templates.

  • PDF

Study on the MTTF of Multi Wave Lengths IR and NIR LEDs Module (다파장 IR과 NIR 모듈의 평균 수명 예측에 관한 연구)

  • Kim, Dong Pyo;Kim, Kyung Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, infrared (IR) and near-infrared (NIR) light-emitting diodes (LEDs) were widely used for home medical applications owing to its low output power and wide exposed area for curing. For deep penetration of the light under the skin, multiple LEDs with wavelengths of 700~10,000 nm were located on a flexible printed circuit board. When multiple wavelengths of LEDs were soldered on a circuit board, the lifetime of LED module highly depends on LEDs with a short lifetime. The mean time to failure (MTTF) was able to calculate with the experimental results under high temperature and the Arrhenius model. The results of this study could help companies to approve the warranty of LED modules and its product.

Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable

  • Zhang, Pengfei;Tang, Zhifeng;Duan, Yuanfeng;Yun, Chung Bang;Lv, Fuzai
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.481-493
    • /
    • 2018
  • Ultrasonic guided waves have attracted increasing attention for non-destructive testing (NDT) and structural health monitoring (SHM) of bridge cables. They offer advantages like single measurement, wide coverage of acoustical field, and long-range propagation capability. To design defect detection systems, it is essential to understand how guided waves propagate in cables and how to select the optimal excitation frequency and mode. However, certain cable characteristics such as multiple wires, anchorage, and polyethylene (PE) sheath increase the complexity in analyzing the guided wave propagation. In this study, guided wave modes for multi-wire bridge cables are identified by using a semi-analytical finite element (SAFE) technique to obtain relevant dispersion curves. Numerical results indicated that the number of guided wave modes increases, the length of the flat region with a low frequency of L(0,1) mode becomes shorter, and the cutoff frequency for high order longitudinal wave modes becomes lower, as the number of steel wires in a cable increases. These findings were used in design of transducers for defect detection and selection of the optimal wave mode and frequency for subsequent experiments. A magnetostrictive transducer system was used to excite and detect the guided waves. The applicability of the proposed approach for detecting and locating wire breakages was demonstrated for a cable with 37 wires. The present ultrasonic guided wave method has been found to be very responsive to the number of brokenwires and is thus capable of detecting defects with varying sizes.

Wireless Graphene Oxide-CNT Bilayer Actuator Controlled with Electromagnetic Wave (전자기웨이브에 의해 제어되는 무선형 그래핀-카본나노튜브 액츄에이터)

  • Xu, Liang;Oh, Il-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.282-284
    • /
    • 2011
  • Based on graphene oxide and multi-walled carbon nanotube layers, a wireless bi-layer actuator that can be remotely controlled with an electromagnetic induction system has been developed. The graphene-based bi-layer actuator exhibits a large one-way bending deformation under eddy current stimuli due to asymmetrical responses originating from the temperature difference of the two different carbon layers. In order to validate one-way bending actuation, the coefficients of thermal expansion of carbon nanotube and graphene oxide are mathematically formulated in this study based on the atomic bonding energy related to the bonding length. The newly designed graphene-based bi-layer actuator is highly sensitive to electromagnetic wave irradiation thus it can trigger a new actuation mode for the realization of remotely controllable actuators and is expected to have potential applications in various wireless systems.

  • PDF

Research on improvement measures of Harbor tranquility in Geumjin Fishing Port Excited by Incident Short Random Waves (단주기 불규칙파에 의한 금진항 정온도 개선대책 연구)

  • Chang, Sung-Yeol;Moon, Yong-Ho;Park, Won-Kyung
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Most of the short period waves are blocked by the breakwaters when the short period irregular waves propagate into the ports. However, nonlinear irregular wave numerical experiments show that the long waves generated by the nonlinear interaction is predominant in the port. Seiches phenomenon in Geumjin Fishing Port is very similar to 60 and 300 second harbor oscillations. By arranging the inner breakwater of the proper length in the inside of the port, it is possible to effectively reduce seiches, as well as the short-period wave, and significantly improve the harbor tranquility. In the case of rectangular basin type such as the Geumjin Fishing Port, the multi-directional irregular wave numerical model should be used for the investigation and countermeasures for the harbor tranquility.

Performance Analysis of Multi-Gigabit Wireless Transmission at THz WLAN-Type Applications

  • Choi, Yonghoon
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.305-310
    • /
    • 2014
  • Optimal position of access point (AP) is important for multi-gigabit wireless transmission in terahertz (THz) wireless local area network (WLAN)-type applications, where there exist the THz characteristic multiple clusters in channel propagation. By considering the multiple clusters in THz indoor communications, this paper investigates the optimal AP position when two APs are issued for increasing the system capacity. Numerical results reveal that the central position of each AP within each half service region, which offers the shortest cumulated path length for line-of-sight paths, is optimal to achieve the maximal system capacity.

The Optical Properties of $ZnS/Na_3AlF_6$ Multi-layer Thin Films with Different Optical Thickness ($ZnS/Na_3AlF_6$ 다층박막의 광학적 두께 변화에 따른 광특성)

  • Jang, Gang-Jae;Jang, Geon-Ik;Lee, Nam-Il;Im, Gwang-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.128-129
    • /
    • 2007
  • $ZnS/Na_3AlF_6$ multi-layer thin film were produced by evaporation system. ZnS were selected as a high refractive index material and $Na_3AlF_6$ were selected as low refractive index material. Optical properties including color effect were systematically studied in terms of different optical thickness by spectrophotometer. In oder to compare with experimental data, the Essential Macleod Program(EMP) was adopted that simulation program. The thin film consisting of $ZnS/Na_3AlF_6$ multi-layer show the wave length of $530{\sim}600nm$, typically color range between purple, blue, green. It was confirmed that this experimental result was well matched with simulation data.

  • PDF