• 제목/요약/키워드: multi parametric

검색결과 360건 처리시간 0.024초

음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합 (Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance)

  • 고조원;고한석
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.670-677
    • /
    • 2019
  • 음성 또는 음향 이벤트 신호에서 발생하는 배경 잡음은 인식기의 성능을 저하시키는 원인이 되며, 잡음에 강인한 특징을 찾는데 많은 노력을 필요로 한다. 본 논문에서는 딥러닝을 기반으로 다중작업 오토인코더(Multi-Task AutoEncoder, MTAE) 와 와설스타인식 생성적 적대 신경망(Wasserstein GAN, WGAN)의 장점을 결합하여, 잡음이 섞인 음향신호에서 잡음과 음성신호를 추정하는 네트워크를 제안한다. 본 논문에서 제안하는 MTAE-WGAN는 구조는 구배 페널티(Gradient Penalty) 및 누설 Leaky Rectified Linear Unit (LReLU) 모수 Parametric ReLU (PReLU)를 활용한 변수 초기화 작업을 통해 음성과 잡음 성분을 추정한다. 직교 구배 페널티와 파라미터 초기화 방법이 적용된 MTAE-WGAN 구조를 통해 잡음에 강인한 음성특징 생성 및 기존 방법 대비 음소 오인식률(Phoneme Error Rate, PER)이 크게 감소하는 성능을 보여준다.

월성1호기 사용후 핵연료 건식저장 캐니스터의 열적 안전성에 미치는 대기 조건 인자의 영향 (Parametric Effects of Ambient Conditions on Thermal Safety of Wolsong (CANDU) Unit 1 Spent Fuel Dry Storage Canister)

  • Park, Jong-Woon;Chun, Moon-Hyun;Shon, Soon-Hwan;Song, Myung-Jae
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.166-177
    • /
    • 1993
  • 사용후 핵연료 건식 저장 캐니스터의 핵연료 바스켓 안에 있는 CANDU 37소자 핵연료 다발의 최대 온도를 계산하기 위한 단순화된 열해석 방법과 함께 대기 조건 인자들이 캐니스터 내부의 최대 핵연료 온도에 미치는 영향을 조사하기 위해 수행한 표본 해석 결과를 제시하였다. 3가지 모우드(mode)의 열전달이 공존하는 캐니스터 내부핵연료 다발의 복잡한 기하학적 구조에 대한 다차원열전달 문제를 풀기 위하여 건식저장 캐니스터에 저장된 CANDU 사용후 핵연료 다발들을 등가 및 동심의 핵연료 실린더(cylinder)로 대치하였다. 추가적인 입력 자료 및 열전달 상관식을 이용하여 등가 핵연료 실린더의 단순화된 축대칭, 2차원, 복수 모우드(multi-mode)의 열전달 문제를 기존의 컴퓨터 코드인 HEATING5로 해석하였다. 예측한 온도 분포와 식물 모형 실험 결과의 비교는 만족스러울 정도로 일치함을 보여주고 있다.

  • PDF

유연 다물체 동역학 해석을 이용한 충격 하중에 따른 트랙터 프론트 로더의 응력 분석 (Stress Analysis of Tractor Front-End Loader against Impact Load Using Flexible Multi-Body Dynamic Simulation)

  • 신창섭;김범수;한현우;정우진;조승제;박영준
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.26-32
    • /
    • 2019
  • This study was conducted to analyze the stresses by impact loads on front-end loaders attached to tractors using flexible multi-body dynamics. The model was designed and validated by comparing previous experimental data with the simulation data obtained in this study. Nine sets of conditions were designed using three weights (500, 300, and 100 kg) loaded inside a bucket and three heights (1700, 1350, and 1000 mm) of the bucket from ground level. A parametric study was carried out at five locations for two types of parts of a front-end loader. All the safety factors for the five locations under all conditions were calculated and were greater than 1. Thus, the designs of the front-end loaders were structurally safe. Based on this study, front-end loaders attached to tractors can be designed effectively in terms of cost and safety.

PLS-MGA 방법론을 활용한 제도론적 관점에서의 공공제도 품질과 사용자 행태의 분석 (Analysis of Public System's Quality and User Behavior Using PLS-MGA Methodology : An Institutional Perspective)

  • 이재열;황승준
    • 산업경영시스템학회지
    • /
    • 제40권2호
    • /
    • pp.78-91
    • /
    • 2017
  • In this study, we conducted a comparative study on user's perception and behavior on public system service (PSS) using institutionalism theory and MGA (multi-group analysis) methodology. In particular, this study focuses on how institutional isomorphism is applied to public system services and how MGA can be implemented correctly in a variance based SEM (structural equation model) such as PLS (partial least square). A data set of 496 effective responses was collected from pubic system users and an empirical research was conducted using three segmented models categorized by public proximity theory (public firms = 113, government contractors = 210, private contractors = 173). For rigorous group comparisons, each model was estimated by the same indicators and approaches. PLS-SEM was used in testing research hypotheses, followed by parametric and non-parametric PLS-MGA procedures in testing categorical moderation effects. This study applied novel procedures for testing composite measurement invariance prior to multi-group comparisons. The following main results and implications are drawn : 1) Partial measurement invariance was established. Multi-group analysis can be done by decomposed models although data can not be pooled for one integrated model. 2) Multi-group analysis using various approaches showed that proximity to public sphere moderated some hypothesized paths from quality dimensions to user satisfaction, which means that categorical moderating effects were partially supported. 3) Careful attention should be given to the selection of statistical test methods and the interpretation of the results of multi-group analysis, taking into account the different outcomes of the PLS-MGA test methods and the low statistical power of the moderating effect. It is necessary to use various methods such as comparing the difference in the path coefficient significance and the significance of the path coefficient difference between the groups. 4) Substantial differences in the perceptions and behaviors of PSS users existed according to proximity to public sphere, including the significance of path coefficients, mediation and categorical moderation effects. 5) The paper also provides detailed analysis and implication from a new institutional perspective. This study using a novel and appropriate methodology for performing group comparisons would be useful for researchers interested in comparative studies employing institutionalism theory and PLS-SEM multi-group analysis technique.

A STUDY ON THE MECHANICAL CHARACTERISTICS OF RESISTANCE MULTI-SPOT WELDED JOINTS WITH PITCH LENGTH

  • Bang, Han-Sur;Bang, Hee-Seon;Joo, Sung-Min;Chang, Woong-Seong;Lee, Chang-Woo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.809-815
    • /
    • 2002
  • For clarifying the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not axi-symmetric, unlike the case of single-spot welded joint, the solution domain for simulation should be three-dimensional. Therefore, in this paper, from the results analyzed using the developed the three dimensional unstationary heat conduction and thermal elasto-plastic programs by an iso-parametric finite element method, mechanical characteristics and their production mechanism on single- and multispot welded joints were clarified. Moreover, effects of pitch length on temperature, welding residual stresses and plastic strain of multi-spot welded joints were evaluated, indicating that a pitch of 30mm was advantageous compared to a pitch of 15mm.

  • PDF

Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multi-drum columns

  • Papaloizou, Loizos;Polycarpou, Panayiotis;Komodromos, Petros;Hatzigeorgiou, George D.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.495-521
    • /
    • 2016
  • Ancient monuments of Greek and Roman classical architecture usually consist of multi-drum columns that are constructed of stone blocks placed on top of each other. Several research studies deal with the seismic behaviour of such structures, since earthquakes are common causes of destruction of such monuments. This paper investigates the effect of multiple earthquakes on the seismic performance of multi-drum columns, through numerical simulations and parametric analyses. The Discrete Element Method and an appropriate contact model have been implemented in a specially developed software application that is able to efficiently perform the necessary simulations in two dimensions. Specifically, various strong ground excitations are used in series for the computation of the collective final deformation of multi-drum columns. In order to calculate this cumulative deformation for a series of ground motions, the individual deformation of the column for each excitation is computed and then used as initial conditions for the next earthquake excitation. Various multi-drum columns with different dimensions are also considered in the analyses in order to examine how the geometric characteristics of columns can affect their seismic sequence behaviour, in combination with the excitation frequency content.

연결 제어 시스템 기반의 멀티해저드 적응형 스마트 제어 기술 성능 평가 (Performance Evaluation of Multi-Hazard Adaptive Smart Control Technique Based on Connective Control System)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제18권4호
    • /
    • pp.97-104
    • /
    • 2018
  • A connected control method for the adjacent buildings has been studied to reduce dynamic responses. In these studies, seismic loads were generally used as an excitation. Recently, multi-hazards loads including earthquake and strong wind loads are employed to investigate control performance of various control systems. Accordingly, strong wind load as well as earthquake load was adopted to evaluate control performance of adaptive smart coupling control system against multi-hazard. To this end, an artificial seismic load in the region of strong seismicity and an artificial wind load in the region of strong winds were generated for control performance evaluation of the coupling control system. Artificial seismic and wind excitations were made by SIMQKE and Kaimal spectrum based on ASCE 7-10. As example buildings, two 20-story and 12-story adjacent buildings were used. An MR (magnetorheological) damper was used as an adaptive smart control device to connect adjacent two buildings. In oder to present nonlinear dynamic behavior of MR damper, Bouc-Wen model was employed in this study. After parametric studies on MR damper capacity, optimal command voltages for MR damper on each seismic and wind loads were investigated. Based on numerical analyses, it was shown that the adaptive smart coupling control system proposed in this study can provide very good control performance for Multi-hazards.

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • 제34권3호
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

Modulation Transfer Function (MTF) Measurement for KOMPSAT EOC image data Using Edge Method

  • Song J. H.;Lee D. H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.489-493
    • /
    • 2004
  • The Modulation Transfer Function (MTF) is commonly used to characterize the spatial quality of imaging systems. This work is the attempt to measure the MTF for KOMPSAT EOC using the non-parametric method as ground inputs. The spatial performance of the KOMPSAT EOC was analyzed by edge method while in flight using multi-temporal image data collected over test site in Seoul. The results from this work demonstrate the potential applicability of this method to estimate MTF for high spatial resolution satellite KOMPSAT-2 that is being developed to be launched in 2005.

  • PDF