• 제목/요약/키워드: multi model ensemble

검색결과 98건 처리시간 0.027초

종분포모형의 불확실성 확인을 위한 앙상블모형 적용 (Applying Ensemble Model for Identifying Uncertainty in the Species Distribution Models)

  • 권혁수
    • 대한공간정보학회지
    • /
    • 제22권4호
    • /
    • pp.47-52
    • /
    • 2014
  • 종분포모형은 생물다양성 평가, 보호지역 지정, 서식지 관리 및 복원, 기후변화 예측 등의 다양한 분야에 활용되고 있으나 공공이나 정책분야에서는 모형의 불확실성으로 인하여 활용이 제한적이었다. 최근에는 이러한 모형의 불확실성을 저감하기 위하여 앙상블이나 합의모형 등의 다중모형을 적용하는 연구가 증가하고 있다. 이에 본 연구에서는 히어리를 대상으로 단일모형과 앙상블(다중) 모형을 적용하고 이를 비교하는 연구를 수행하였다. 모형은 AUC와 kappa, TSS를 이용하여 적합도를 평가하였으며, 이 중 모형 간의 비교가 용이하고 이항형 지도로 바로 변환할 수 있는 TSS가 효과적이었다. 단일모형과 앙상블 모형 모두 높은 모형적합도를 나타내었으며, 다중 모형 중에서는 RF, Maxent, GBM이 높게, GAM, SRE는 비교적 낮게 평가되었다. 예측지도에서는 단일모형에 비해 다중모형의 예측범위가 과대 추정되는 경향이 있었다. 이는 여러 모형이 중첩된 결과로 현장전문가와 모형전문가들 간의 협력연구를 통하여 적절한 모형 선택과 가중치 부여 등을 통하여 문제를 해결할 수 있다. 앙상블모형을 공간의사결정이나 보호지역계획에 활용하기 위해서는 불확실성의 정도와 원인을 파악하고, 이를 저감하려는 개선작업과 함께 결과의 불확실성이나 위험성을 인지하고 의사결정을 해야 한다.

레이더 강우 앙상블과 유출 블랜딩 기법을 이용한 최적 유출 수문곡선 산정 (Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models)

  • 이명진;강나래;김종성;김형수
    • 한국수자원학회논문집
    • /
    • 제51권3호
    • /
    • pp.221-233
    • /
    • 2018
  • 최근 기후변화로 인한 국지성 호우 및 태풍 피해가 자주 발생하고 있다. 이와 같은 피해를 저감하기 위해서는 정확한 강우의 예측과 홍수량 산정이 필요하다. 그러나 지점 및 레이더 강우 시 공간적 오차를 포함하고 있고, 유출 모형에 의한 유출수문곡선 역시 보정을 실시하더라도 관측유량과 오차를 가지고 있어 불확실성이 존재한다. 따라서 본 연구에서는 확률론적 강우 앙상블을 생성하여 강우의 불확실성을 확인하였다. 또한 유출 결과를 통해 수문 모형의 불확실성을 확인하였고, 블랜딩 기법을 이용하여 하나의 통합된 유출 수문곡선을 제시하였다. 생성된 강우앙상블은 강우강도 및 지형적인 영향으로 레이더가 과소 관측이 될 때, 강우 앙상블의 불확실성이 큰 것을 확인하였고, 블랜딩 기법을 적용하여 산정된 최적 유출 수문곡선은 유출모형의 불확실성을 크게 줄이는 것으로 나타났다. 본 연구 결과를 활용한다면, 정확한 홍수량 산정 및 예측을 통해 집중호우로 인한 피해를 줄일 수 있을 것으로 판단된다.

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

머신러닝을 이용한 철광석 가격 예측에 대한 연구 (Forecasting of Iron Ore Prices using Machine Learning)

  • 이우창;김양석;김정민;이충권
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.57-72
    • /
    • 2020
  • 철광석의 가격은 여러 국가와 기업들의 수요와 공급에 따라서 높은 변동성이 지속되고 있다. 이러한 비즈니스 환경에서 철광석의 가격을 예측하는 것은 중요해졌다. 본 연구는 머신러닝 기법을 이용하여 철광석이 거래되는 시점으로부터 한 달 전에 철광석 거래가격을 미리 예측하는 모형을 개발하고자 하였다. 예측 모형은 시계열 데이터를 활용한 예측 방법론으로 많이 활용되고 있는 시차분포 모형과 다층신경망 (Multi-layer perceptron), 순환신경망 (Recurrent neural network), 그리고 장단기 기억 네트워크 (Long short-term memory)와 같은 딥 러닝(Deep Learning) 모형을 사용하였다. 측정지표를 통해 개별 모형을 비교한 결과에 따르면, LSTM 모형이 예측 오차가 가장 낮은 것으로 나타났다. 또한, 앙상블 기법을 적용한 모형들을 비교한 결과, 시차분포와 LSTM의 앙상블 모형이 예측오차가 가장 낮은 것으로 나타났다.

앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발 (Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model)

  • 조성주;최우석;최상현
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.383-400
    • /
    • 2023
  • 전 세계적으로 대기오염 관련 질병 발병률이 상승하고, 2022년 세계보건기구의 보고에 따르면 매년 약 700만 명의 사망자가 발생하고 있다. 또한, 산업 시설 확장과 다양한 배출원 증가, 그리고 악취 물질의 무분별한 방출로 인해 대기오염 문제는 사회적으로 중요성을 띄고 있다. 한국에서도 악취를 독립적인 환경오염으로 정의하며, 지역 주민의 건강에 직접적인 영향을 미치는 문제로 간주하고 있으나 현재까지 악취 관리가 미흡하며 악취 관리 시스템의 개선이 필요하다. 본 연구에서는 악취 관리 시스템 개선을 목표로 충청북도 오창에 설치된 악취 센서에서 수집한 1,010,749개 데이터를 활용하여 앙상블 기반의 악취 농도 다지역 통합 예측 모델을 설계하고 분석하였다. 연구 결과, XGBoost 알고리즘을 사용한 모델의 RMSE가 0.0096로 가장 성능이 좋았으며, 단일 지역 모델(0.0146)과 비교하여 평균 오차 크기가 51.9% 낮았다. 이를 통해 서로 다른 지역에서 수집된 악취 농도 데이터를 표준화한 후 다지역 통합 예측 모델을 설계함으로써 데이터의 양을 늘리고 정확도를 높일 수 있으며 또한, 하나의 통합 모델로 다양한 지역에서 예측이 가능함을 확인하였다.

CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석 (Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia)

  • 김병희;문혜진;하경자
    • 대기
    • /
    • 제25권2호
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

동아시아 기온과 강수의 불확실성 평가 (An Uncertainty Assessment of Temperature and Precipitation over East Asia)

  • 신진호;김민지;이효신;권원태
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.299-303
    • /
    • 2008
  • In this study, an uncertainty assessment for surface air temperature(T2m) and precipitation(PCP) over East Asia is carried out. The data simulated by the intergovermental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) Atmosphere-Ocean coupled general circulation Model (AOGCM) are used to assess the uncertainty. Examination of the seasonal uncertainty of T2m and PCP variabilities shows that spring-summer cold bias and fall warm bias of T2m are found over both East Asia and the Korea peninsula. In contrast, distinctly summer dry bias and winter-spring wet bias of PCP over the Korea peninsula is found. To investigate the PCP seasonal variability over East Asia, the cyclostationary empirical orthogonal function(CSEOF) analysis is employed. The CSEOF analysis can extract physical modes (spatio-temporal patterns) and their undulation (PC time series) of PCP, showing the evolution of PCP. A comparison between spatio-temporal patterns of observed and modeled PCP anomalies shows that positive PCP anomalies located in northeastern China (north of Korea) of the multi-model ensemble(MME) cannot explain properly the contribution to summer monsoon rainfalls across Korea and Japan. The uncertainty of modeled PCP indicates that there is disagreement between observed and MME anomalies. The spatio-temporal deviation of the PCP is significantly associated with lower- and upper-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly contribute to summer rainfalls. These lower- and upper-level circulations physically consistent with PCP give a insight of the reason why differences between modeled and observed PCP occur.

  • PDF

레이더 강우 앙상블과 다양한 유출모형의 블랜딩을 활용한 최적 유출곡선 산정 (Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of RunoffsBasin)

  • 이명진;주홍준;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.135-135
    • /
    • 2017
  • 최근 강우-유출 모형은 물리적 현상에 근거한 확정론적 모의 모형과 물리적 성분으로 설명할 수 없는 내용에 대해 통계적으로 접근하는 추계학적 모의 모형 등이 계속 연구되고 있어 자연현상에 가까운 결과를 기대할 수 있게 되었다. 하지만 우리나라의 경우 많은 연구에도 불구하고 돌발성 집중호우, 여름철 집중되는 강우 등으로 인해 재난이 반복적으로 발생하고 있어 모형의 정확성에 대한 논의가 지속되고 있다. 동일한 유역에 동일한 입력자료를 사용하더라도 사용하는 모형에 따라 유출 분석결과는 상이하며 이는 유출 해석에 대한 불확실성으로 작용한다. 본 연구에서는 앙상블 및 블랜딩 기법을 사용하여 각 강우-유출 모형의 불확실성을 고려하여 최적 유출량을 산정하고자 한다. 대상 유역으로는 한강 수계에 있는 중랑천 유역을 선정하였으며, Distributed 모형인 Vflo 모형과 Lumped 모형인 저류함수 모형, SSARR모형, TANK 모형을 이용하여 유출 분석을 실시하였다. 그 후, Multi-Model Super Ensemble(MMSE), Simple Model Average(SMA), Mean Square Error(MSE) 방법 등의 blending 기법을 이용하여 하나의 통합된 형태의 유출 분석 결과를 제시하였으며, 최적 유출량 산정을 위한 blending 기법을 선정하였다. 본 연구를 통해 동일한 강우 시나리오에 대한 여러 강우-유출 모형에 대한 정확도를 확인하였으며, 앙상블 및 블랜딩 기법을 사용하여 유출 분석에 대한 정확도를 향상시킬 수 있을 것으로 판단된다.

  • PDF

기후 인자와 관련된 육상 탄소 순환 변동: 탄소추적시스템과 CMIP5 모델 결과 비교 (Response of Terrestrial Carbon Cycle: Climate Variability in CarbonTracker and CMIP5 Earth System Models)

  • 선민아;김영미;이조한;부경온;변영화;조천호
    • 대기
    • /
    • 제27권3호
    • /
    • pp.301-316
    • /
    • 2017
  • This study analyzes the spatio-temporal variability of terrestrial carbon flux and the response of land carbon sink with climate factors to improve of understanding of the variability of land-atmosphere carbon exchanges accurately. The coupled carbon-climate models of CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) and CT (CarbonTracker) are used. The CMIP5 multi-model ensemble mean overestimated the NEP (Net Ecosystem Production) compares to CT and GCP (Global Carbon Project) estimates over the period 2001~2012. Variation of NEP in the CMIP5 ensemble mean is similar to CT, but a couple of models which have fire module without nitrogen cycle module strongly simulate carbon sink in the Africa, Southeast Asia, South America, and some areas of the United States. Result in comparison with climate factor, the NEP is highly affected by temperature and solar radiation in both of CT and CMIP5. Partial correlation between temperature and NEP indicates that the temperature is affecting NEP positively at higher than mid-latitudes in the Northern Hemisphere, but opposite correlation represents at other latitudes in CT and most CMIP5 models. The CMIP5 models except for few models show positive correlation with precipitation at $30^{\circ}N{\sim}90^{\circ}N$, but higher percentage of negative correlation represented at $60^{\circ}S{\sim}30^{\circ}N$ compare to CT. For each season, the correlation between temperature (solar radiation) and NEP in the CMIP5 ensemble mean is similar to that of CT, but overestimated.

Climate Change Scenario Generation and Uncertainty Assessment: Multiple variables and potential hydrological impacts

  • 권현한;박래건;최병규;박세훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.268-272
    • /
    • 2010
  • The research presented here represents a collaborative effort with the SFWMD on developing scenarios for future climate for the SFWMD area. The project focuses on developing methodology for simulating precipitation representing both natural quasi-oscillatory modes of variability in these climate variables and also the secular trends projected by the IPCC scenarios that are publicly available. This study specifically provides the results for precipitation modeling. The starting point for the modeling was the work of Tebaldi et al that is considered one of the benchmarks for bias correction and model combination in this context. This model was extended in the framework of a Hierarchical Bayesian Model (HBM) to formally and simultaneously consider biases between the models and observations over the historical period and trends in the observations and models out to the end of the 21st century in line with the different ensemble model simulations from the IPCC scenarios. The low frequency variability is modeled using the previously developed Wavelet Autoregressive Model (WARM), with a correction to preserve the variance associated with the full series from the HBM projections. The assumption here is that there is no useful information in the IPCC models as to the change in the low frequency variability of the regional, seasonal precipitation. This assumption is based on a preliminary analysis of these models historical and future output. Thus, preserving the low frequency structure from the historical series into the future emerges as a pragmatic goal. We find that there are significant biases between the observations and the base case scenarios for precipitation. The biases vary across models, and are shrunk using posterior maximum likelihood to allow some models to depart from the central tendency while allowing others to cluster and reduce biases by averaging. The projected changes in the future precipitation are small compared to the bias between model base run and observations and also relative to the inter-annual and decadal variability in the precipitation.

  • PDF