References
- Anav, A., P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais, P. Cox, C. Jones, M. Jung, R. Myneni, and Z. Zhu, 2013: Evaluating the land ocean components of the global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 6801-6843, doi:10.1175/JCLI-D-12-00417.1.
- Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.
- Arora, V. K., and Coauthors, 2013: Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 5289-5314, doi:10.1175/JCLI-D-12-00494.1.
- Baba, K., R. Shibata, and M. Sibuya, 2004: Partial correlation and conditional correlation as measures of conditional independence. Australian New Zealand J. Stat., 46, 657-664. https://doi.org/10.1111/j.1467-842X.2004.00360.x
-
Basu, S., and Coauthors, 2011: The seasonal cycle amplitude of total column
$CO_2$ : Factors behind the model-observation mismatch. J. Geophys. Res., 116, D23306, doi:10.1029/2011JD016124. - Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834-838, doi:10.1126/science.1184984.
- Boer, G. J., and V. K. Arora, 2010: Geographic aspects of temperature and concentration feedbacks in the carbon budget. J. Climate, 23, 775-784, doi:10.1175/2009JCLI3161.1.
- Boer, G. J., and V. K. Arora, 2013: Feedbacks in emission-driven and concentration-driven global carbon budget. J. Climate, 26, 3326-3341, doi:10.1175/JCLI-D-12-00365.1.
- Booth, B. B., and C. D. Jones, 2011: Terrestrial response of QUMPC ensemble. Hadley Centre Tech. Note 89, 19 pp.
- Brovkin, V., T. Raddatz, C. H. Reick, M. Claussen, and V. Gayler, 2009: Global biogeophysical interactions between forest and climate. Geophys. Res. Lett., 36, L07405.
- Chapin III, F. S., and Coauthors, 2005: Role of land-surface changes in arctic summer warming. Science, 310, 657-660, doi:10.1126/science.1117368.
- Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model-HadGEM2. Geosci. Model Dev., 4, 1051-1075, doi:10.5194/gmd-4-1051-2011.
- Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 589-662.
- Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123-2165, doi:10.1007/s00382-012-1636-1.
- Dunne, J. P., and Coauthors, 2012: GFDL's ESM2 global coupled climate-carbon Earth System Models Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646-6665, doi:10.1175/JCLI-D-11-00560.1.
- Dunne, J. P., and Coauhtors, 2013: GFDL's ESM2 global coupled climate-carbon Earth System Models. Part II: Carbon system formation and baseline simulation characteristics. J. Climate, 26, 2247-2267, doi:10.1175/JCLI-D-12-00150.1.
- Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337-3353. https://doi.org/10.1175/JCLI3800.1
- Gillett, N. P., P. A. Stott, and B. D. Santer, 2008: Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys. Res. Lett., 35, L09707, doi:10.1029/2008GL033670.
-
Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative
$CO_2$ emissions using CMIP5 simulations. J. Climate, 26, 6844-6858, doi:10.1175/JCLI-D-12-00476.1. - Huijnen, V., and Coauthors, 2010: The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev., 3, 445-473, doi:10.5194/gmd-3-445-2010.
- IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
- Jiang, Y., Z. Lu, X. Liu, Y. Qian, K. Zhang, Y. Wang, and X.-Q. Yang, 2016: Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmos. Chem. Phys., 16, 14805-14824, doi:10.5194/acp-16-14805-2016.
- Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res., 112, D20211. https://doi.org/10.1029/2007JD008688
- Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543-570, doi:10.5194/gmd-4-543-2011.
-
Kato, T., and Y. Tang, 2008: Spatial variability and major controlling factors of
$CO_2$ sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob. Change Biol., 14, 2333-2348. https://doi.org/10.1111/j.1365-2486.2008.01646.x - Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peers, F. Dentener, and P. Bergamaschi, 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417-432. https://doi.org/10.5194/acp-5-417-2005
- Kulawik, S., and Coauthors, 2016: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
- Landry, J.-S., H. D. Matthews, and N. Ramankutty, 2015: A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Climatic Change, 133, 179-192, doi:10.1007/s10584-015-1461-8.
- Landry, J.-S., A.-I. Partanen, and H. D. Matthews, 2017: Carbon cycle and climate effects of forcing from fire-emitted aerosols. Envion. Res. Lett., 12, 025002, doi:10.1088/1748-9326/aa51de.
- Law, B. E., and Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agr. Forest Meteorol., 113, 97-120. https://doi.org/10.1016/S0168-1923(02)00104-1
- Le Quere, C., and Coauthors, 2015: Global carbon budget 2015. Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015.
- Lin, J.-L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702, doi:10.1029/2006GL028937.
- Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 6775-6800, doi:10.1175/JCLI-D-12-00184.1.
- Mahowald, N., D. S. Ward, S. Kloster, M. G. Flanner, C. L. Heald, N. G. Heavens, P. G. Hess, J.-F. Lamarque, and P. Y. Chuang, 2011: Aerosol impacts on climate and biogeochemistry. Annu. Rev. Env. Resour., 36, 45-74, doi:10.1146/annurev-environ-042009-094507.
- Maier-Reimer, E., I. Kriest, J. Segschneider, and P. Wetzel, 2005: The HAMburg Ocean Carbon Cycle model HAMOCC 5.1 - Technical description, Release 1.1. Max-Planck Institute for Meteorology, 49 pp.
- Malhi, Y., 2002: Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos. Trans. Roy. Soc. London, 360, 2925-2945. https://doi.org/10.1098/rsta.2002.1098
- Moorcroft, P. R., 2006: How close are we to a predictive science of the biosphere? Trends Ecol. Evol., 21, 400-407. https://doi.org/10.1016/j.tree.2006.04.009
- Nasrollahi, N., A., AghaKouchak, L. Cheng, L. Damberg, T. J. Phillips, C. Miao, K. Hsu, and S. Sorooshian, 2015: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res., 51, 2847-2864, doi:10.1002/2014WR016318.
-
Peng, J., L. Dan, and M. Huang, 2014: Sensitivity of global and regional terrestrial carbon storage to the direct
$CO_2$ effect and climate change based on the CMIP5 model intercomparison. PLoS ONE, 9, e95282, doi:10.1371/journal.pone.0095282. -
Peng, J., and L. Dan, 2015: Impact of
$CO_2$ concentration and climate change on the terrestrial carbon flux using six global climate-carbon coupled models. Ecol. Model., 304, 69-83, doi:10.1016/j.ecolmodel.2015.02.016. -
Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans, 2005: An ensemble data assimilation system to estimate
$CO_2$ surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157 - Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci., 104, 18925-18930. https://doi.org/10.1073/pnas.0708986104
- Piao, S., and Coauthors, 2008: Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52. https://doi.org/10.1038/nature06444
-
Piao, S., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to
$CO_2$ trends. Glob. Change Biol., 19, 2117-2132, doi:10.1111/gcb.12187. - Potter, C., S. Klooster, R. Myneni, V. Genovese, P.-N. Tan, and V. Kumer, 2003: Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling. Global Planet. Change, 39, 201-213. https://doi.org/10.1016/j.gloplacha.2003.07.001
- Raddatz, T. J., C. H. Reick, W. Knorr, J. Kattge, E. Roeckner, R. Schnur, K.-G. Schnitzler, P. Wetzel, and J. Jungclaus, 2007: Will the tropical land biosphere dominate the climatecarbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565-574. https://doi.org/10.1007/s00382-007-0247-8
- Santer, B. D., and Coauthors, 2007: Identification of human induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci., 104, 15248-15253. https://doi.org/10.1073/pnas.0702872104
- Schneising, O., M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J. P. Burrows, 2014: Terrestrial carbon sink observed from space: Variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability. Atmos. Chem. Phys., 14, 133-141, doi:10.5194/acp-14-133-2014.
- Shao, P., X. Zeng, K. Sakaguchi, R. K. Monson, and X. Zeng, 2013: Terrestrial carbon cycle - climate relations in eight CMIP5 earth system models. J. Climate, 26, 8744-8764, doi:10.1175/JCLI-D-12-00831.1.
- Sokolov, A. P., D. W. Kicklighter, J. M. Melillo, B. S. Felzer, C. A. Schlosser, and T. W. Cronin, 2008: Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Climate, 21, 3776-3796, doi:10.1175/2008JCLI2038.1.
- Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMS-D-11-00094.1.
-
Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon-nitrogen cycle coupling on land model response to
$CO_2$ fertilization and climate variability. Global Biogeochem. Cy., 21, GB4018, doi:10.1029/2006GB002868. - Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845-872, doi:10.5194/gmd-4-845-2011.
- Wu, T., and Coauhtors, 2013: Global Carbon budgets simulated by the Beijing Climate Center Climate System Model for the last Century. J. Geophys. Res., 118, 4326-4347, doi:10.1002/jgrd.50320.
- Xia, J., J. Chen, S. Piao, P. Ciais, Y. Luo, and S. Wan, 2014: Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci., 7, 173-180, doi:10.1038/NGEO2093.
- Zaehle, S., P. Friedlingstein, and A. D. Friend, 2010a: Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401, doi:10.1029/2009GL041345.
- Zaehle, S., A. D. Friend, P. Friedlingstein, F. Dentener, P. Peylin, and M. Schulz, 2010b: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochem. Cy., 24, GB1006, doi:10.1029/2009GB003522.
-
Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual
$CO_2$ variability. Global Biogeochem. Cy., 19, GB1016, doi:10.1029/2004GB002273. -
Zeng, Z.-C., and Coauthors, 2017: Global land mapping of satellite-observed
$CO_2$ total columns using spatiotemporal geostatistics. Int. J. Digital Earth, 10, 426-456, doi:10.1080/17538947.2016.1156777. - Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943, doi:10.1126/science.1192666.
- Zickfeld, K., M. Eby, H. D. Mattews, A. Schmittner, and A. J. Weaver, 2011: Nonlinearity of carbon cycle feedbacks. J. Climate, 24, 4255-4275, doi:10.1175/2011JCLI3898.1.