DOI QR코드

DOI QR Code

Response of Terrestrial Carbon Cycle: Climate Variability in CarbonTracker and CMIP5 Earth System Models

기후 인자와 관련된 육상 탄소 순환 변동: 탄소추적시스템과 CMIP5 모델 결과 비교

  • Sun, Minah (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Youngmi (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Boo, Kyoung-On (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Cho, Chun-Ho (Climate Research Division, National Institute of Meteorological Sciences)
  • 선민아 (국립기상과학원 기후연구과) ;
  • 김영미 (국립기상과학원 기후연구과) ;
  • 이조한 (국립기상과학원 기후연구과) ;
  • 부경온 (국립기상과학원 기후연구과) ;
  • 변영화 (국립기상과학원 기후연구과) ;
  • 조천호 (국립기상과학원 기후연구과)
  • Received : 2017.05.19
  • Accepted : 2017.07.31
  • Published : 2017.09.30

Abstract

This study analyzes the spatio-temporal variability of terrestrial carbon flux and the response of land carbon sink with climate factors to improve of understanding of the variability of land-atmosphere carbon exchanges accurately. The coupled carbon-climate models of CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) and CT (CarbonTracker) are used. The CMIP5 multi-model ensemble mean overestimated the NEP (Net Ecosystem Production) compares to CT and GCP (Global Carbon Project) estimates over the period 2001~2012. Variation of NEP in the CMIP5 ensemble mean is similar to CT, but a couple of models which have fire module without nitrogen cycle module strongly simulate carbon sink in the Africa, Southeast Asia, South America, and some areas of the United States. Result in comparison with climate factor, the NEP is highly affected by temperature and solar radiation in both of CT and CMIP5. Partial correlation between temperature and NEP indicates that the temperature is affecting NEP positively at higher than mid-latitudes in the Northern Hemisphere, but opposite correlation represents at other latitudes in CT and most CMIP5 models. The CMIP5 models except for few models show positive correlation with precipitation at $30^{\circ}N{\sim}90^{\circ}N$, but higher percentage of negative correlation represented at $60^{\circ}S{\sim}30^{\circ}N$ compare to CT. For each season, the correlation between temperature (solar radiation) and NEP in the CMIP5 ensemble mean is similar to that of CT, but overestimated.

Keywords

References

  1. Anav, A., P. Friedlingstein, M. Kidston, L. Bopp, P. Ciais, P. Cox, C. Jones, M. Jung, R. Myneni, and Z. Zhu, 2013: Evaluating the land ocean components of the global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 6801-6843, doi:10.1175/JCLI-D-12-00417.1.
  2. Arora, V. K., J. F. Scinocca, G. J. Boer, J. R. Christian, K. L. Denman, G. M. Flato, V. V. Kharin, W. G. Lee, and W. J. Merryfield, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.
  3. Arora, V. K., and Coauthors, 2013: Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. J. Climate, 26, 5289-5314, doi:10.1175/JCLI-D-12-00494.1.
  4. Baba, K., R. Shibata, and M. Sibuya, 2004: Partial correlation and conditional correlation as measures of conditional independence. Australian New Zealand J. Stat., 46, 657-664. https://doi.org/10.1111/j.1467-842X.2004.00360.x
  5. Basu, S., and Coauthors, 2011: The seasonal cycle amplitude of total column $CO_2$: Factors behind the model-observation mismatch. J. Geophys. Res., 116, D23306, doi:10.1029/2011JD016124.
  6. Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834-838, doi:10.1126/science.1184984.
  7. Boer, G. J., and V. K. Arora, 2010: Geographic aspects of temperature and concentration feedbacks in the carbon budget. J. Climate, 23, 775-784, doi:10.1175/2009JCLI3161.1.
  8. Boer, G. J., and V. K. Arora, 2013: Feedbacks in emission-driven and concentration-driven global carbon budget. J. Climate, 26, 3326-3341, doi:10.1175/JCLI-D-12-00365.1.
  9. Booth, B. B., and C. D. Jones, 2011: Terrestrial response of QUMPC ensemble. Hadley Centre Tech. Note 89, 19 pp.
  10. Brovkin, V., T. Raddatz, C. H. Reick, M. Claussen, and V. Gayler, 2009: Global biogeophysical interactions between forest and climate. Geophys. Res. Lett., 36, L07405.
  11. Chapin III, F. S., and Coauthors, 2005: Role of land-surface changes in arctic summer warming. Science, 310, 657-660, doi:10.1126/science.1117368.
  12. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model-HadGEM2. Geosci. Model Dev., 4, 1051-1075, doi:10.5194/gmd-4-1051-2011.
  13. Denman, K. L., and Coauthors, 2007: Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis, S. Solomon et al. Eds., Cambridge University Press, 589-662.
  14. Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 2123-2165, doi:10.1007/s00382-012-1636-1.
  15. Dunne, J. P., and Coauthors, 2012: GFDL's ESM2 global coupled climate-carbon Earth System Models Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646-6665, doi:10.1175/JCLI-D-11-00560.1.
  16. Dunne, J. P., and Coauhtors, 2013: GFDL's ESM2 global coupled climate-carbon Earth System Models. Part II: Carbon system formation and baseline simulation characteristics. J. Climate, 26, 2247-2267, doi:10.1175/JCLI-D-12-00150.1.
  17. Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337-3353. https://doi.org/10.1175/JCLI3800.1
  18. Gillett, N. P., P. A. Stott, and B. D. Santer, 2008: Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys. Res. Lett., 35, L09707, doi:10.1029/2008GL033670.
  19. Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative $CO_2$ emissions using CMIP5 simulations. J. Climate, 26, 6844-6858, doi:10.1175/JCLI-D-12-00476.1.
  20. Huijnen, V., and Coauthors, 2010: The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev., 3, 445-473, doi:10.5194/gmd-3-445-2010.
  21. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
  22. Jiang, Y., Z. Lu, X. Liu, Y. Qian, K. Zhang, Y. Wang, and X.-Q. Yang, 2016: Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmos. Chem. Phys., 16, 14805-14824, doi:10.5194/acp-16-14805-2016.
  23. Jones, A., J. M. Haywood, and O. Boucher, 2007: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model. J. Geophys. Res., 112, D20211. https://doi.org/10.1029/2007JD008688
  24. Jones, C. D., and Coauthors, 2011: The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543-570, doi:10.5194/gmd-4-543-2011.
  25. Kato, T., and Y. Tang, 2008: Spatial variability and major controlling factors of $CO_2$ sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob. Change Biol., 14, 2333-2348. https://doi.org/10.1111/j.1365-2486.2008.01646.x
  26. Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peers, F. Dentener, and P. Bergamaschi, 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417-432. https://doi.org/10.5194/acp-5-417-2005
  27. Kulawik, S., and Coauthors, 2016: Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
  28. Landry, J.-S., H. D. Matthews, and N. Ramankutty, 2015: A global assessment of the carbon cycle and temperature responses to major changes in future fire regime. Climatic Change, 133, 179-192, doi:10.1007/s10584-015-1461-8.
  29. Landry, J.-S., A.-I. Partanen, and H. D. Matthews, 2017: Carbon cycle and climate effects of forcing from fire-emitted aerosols. Envion. Res. Lett., 12, 025002, doi:10.1088/1748-9326/aa51de.
  30. Law, B. E., and Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agr. Forest Meteorol., 113, 97-120. https://doi.org/10.1016/S0168-1923(02)00104-1
  31. Le Quere, C., and Coauthors, 2015: Global carbon budget 2015. Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015.
  32. Lin, J.-L., 2007: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702, doi:10.1029/2006GL028937.
  33. Long, M. C., K. Lindsay, S. Peacock, J. K. Moore, and S. C. Doney, 2013: Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J. Climate, 26, 6775-6800, doi:10.1175/JCLI-D-12-00184.1.
  34. Mahowald, N., D. S. Ward, S. Kloster, M. G. Flanner, C. L. Heald, N. G. Heavens, P. G. Hess, J.-F. Lamarque, and P. Y. Chuang, 2011: Aerosol impacts on climate and biogeochemistry. Annu. Rev. Env. Resour., 36, 45-74, doi:10.1146/annurev-environ-042009-094507.
  35. Maier-Reimer, E., I. Kriest, J. Segschneider, and P. Wetzel, 2005: The HAMburg Ocean Carbon Cycle model HAMOCC 5.1 - Technical description, Release 1.1. Max-Planck Institute for Meteorology, 49 pp.
  36. Malhi, Y., 2002: Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos. Trans. Roy. Soc. London, 360, 2925-2945. https://doi.org/10.1098/rsta.2002.1098
  37. Moorcroft, P. R., 2006: How close are we to a predictive science of the biosphere? Trends Ecol. Evol., 21, 400-407. https://doi.org/10.1016/j.tree.2006.04.009
  38. Nasrollahi, N., A., AghaKouchak, L. Cheng, L. Damberg, T. J. Phillips, C. Miao, K. Hsu, and S. Sorooshian, 2015: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res., 51, 2847-2864, doi:10.1002/2014WR016318.
  39. Peng, J., L. Dan, and M. Huang, 2014: Sensitivity of global and regional terrestrial carbon storage to the direct $CO_2$ effect and climate change based on the CMIP5 model intercomparison. PLoS ONE, 9, e95282, doi:10.1371/journal.pone.0095282.
  40. Peng, J., and L. Dan, 2015: Impact of $CO_2$ concentration and climate change on the terrestrial carbon flux using six global climate-carbon coupled models. Ecol. Model., 304, 69-83, doi:10.1016/j.ecolmodel.2015.02.016.
  41. Peters, W., J. B. Miller, J. Whitaker, A. S. Denning, A. Hirsch, M. C. Krol, D. Zupanski, L. Bruhwiler, and P. P. Tans, 2005: An ensemble data assimilation system to estimate $CO_2$ surface fluxes from atmospheric trace gas observations. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157
  42. Peters, W., and Coauthors, 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci., 104, 18925-18930. https://doi.org/10.1073/pnas.0708986104
  43. Piao, S., and Coauthors, 2008: Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52. https://doi.org/10.1038/nature06444
  44. Piao, S., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to $CO_2$ trends. Glob. Change Biol., 19, 2117-2132, doi:10.1111/gcb.12187.
  45. Potter, C., S. Klooster, R. Myneni, V. Genovese, P.-N. Tan, and V. Kumer, 2003: Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling. Global Planet. Change, 39, 201-213. https://doi.org/10.1016/j.gloplacha.2003.07.001
  46. Raddatz, T. J., C. H. Reick, W. Knorr, J. Kattge, E. Roeckner, R. Schnur, K.-G. Schnitzler, P. Wetzel, and J. Jungclaus, 2007: Will the tropical land biosphere dominate the climatecarbon cycle feedback during the twenty-first century? Climate Dyn., 29, 565-574. https://doi.org/10.1007/s00382-007-0247-8
  47. Santer, B. D., and Coauthors, 2007: Identification of human induced changes in atmospheric moisture content. Proc. Natl. Acad. Sci., 104, 15248-15253. https://doi.org/10.1073/pnas.0702872104
  48. Schneising, O., M. Reuter, M. Buchwitz, J. Heymann, H. Bovensmann, and J. P. Burrows, 2014: Terrestrial carbon sink observed from space: Variation of growth rates and seasonal cycle amplitudes in response to interannual surface temperature variability. Atmos. Chem. Phys., 14, 133-141, doi:10.5194/acp-14-133-2014.
  49. Shao, P., X. Zeng, K. Sakaguchi, R. K. Monson, and X. Zeng, 2013: Terrestrial carbon cycle - climate relations in eight CMIP5 earth system models. J. Climate, 26, 8744-8764, doi:10.1175/JCLI-D-12-00831.1.
  50. Sokolov, A. P., D. W. Kicklighter, J. M. Melillo, B. S. Felzer, C. A. Schlosser, and T. W. Cronin, 2008: Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Climate, 21, 3776-3796, doi:10.1175/2008JCLI2038.1.
  51. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMS-D-11-00094.1.
  52. Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, 2007: Influence of carbon-nitrogen cycle coupling on land model response to $CO_2$ fertilization and climate variability. Global Biogeochem. Cy., 21, GB4018, doi:10.1029/2006GB002868.
  53. Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845-872, doi:10.5194/gmd-4-845-2011.
  54. Wu, T., and Coauhtors, 2013: Global Carbon budgets simulated by the Beijing Climate Center Climate System Model for the last Century. J. Geophys. Res., 118, 4326-4347, doi:10.1002/jgrd.50320.
  55. Xia, J., J. Chen, S. Piao, P. Ciais, Y. Luo, and S. Wan, 2014: Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci., 7, 173-180, doi:10.1038/NGEO2093.
  56. Zaehle, S., P. Friedlingstein, and A. D. Friend, 2010a: Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 37, L01401, doi:10.1029/2009GL041345.
  57. Zaehle, S., A. D. Friend, P. Friedlingstein, F. Dentener, P. Peylin, and M. Schulz, 2010b: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochem. Cy., 24, GB1006, doi:10.1029/2009GB003522.
  58. Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual $CO_2$ variability. Global Biogeochem. Cy., 19, GB1016, doi:10.1029/2004GB002273.
  59. Zeng, Z.-C., and Coauthors, 2017: Global land mapping of satellite-observed $CO_2$ total columns using spatiotemporal geostatistics. Int. J. Digital Earth, 10, 426-456, doi:10.1080/17538947.2016.1156777.
  60. Zhao, M., and S. W. Running, 2010: Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943, doi:10.1126/science.1192666.
  61. Zickfeld, K., M. Eby, H. D. Mattews, A. Schmittner, and A. J. Weaver, 2011: Nonlinearity of carbon cycle feedbacks. J. Climate, 24, 4255-4275, doi:10.1175/2011JCLI3898.1.