• 제목/요약/키워드: mt DNA haplotype

검색결과 83건 처리시간 0.019초

The Robust Phylogeny of Korean Wild Boar (Sus scrofa coreanus) Using Partial D-Loop Sequence of mtDNA

  • Cho, In-Cheol;Han, Sang-Hyun;Fang, Meiying;Lee, Sung-Soo;Ko, Moon-Suck;Lee, Hang;Lim, Hyun-Tae;Yoo, Chae-Kyoung;Lee, Jun-Heon;Jeon, Jin-Tae
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.423-430
    • /
    • 2009
  • In order to elucidate the precise phylogenetic relationships of Korean wild boar (Sus scrofa coreanus), a partial mtDNA D-loop region (1,274 bp, NC_000845 nucleotide positions 16576-1236) was sequenced among 56 Korean wild boars. In total, 25 haplotypes were identified and classified into four distinct subgroups (K1 to K4) based on Bayesian phylogenetic analysis using Markov chain Monte Carlo methods. An extended analysis, adding 139 wild boars sampled worldwide, confirmed that Korean wild boars clearly belong to the Asian wild boar cluster. Unexpectedly, the Myanmarese/Thai wild boar population was detected on the same branch as Korean wild boar subgroups K3 and K4. A parsimonious median-joining network analysis including all Asian wild boar haplotypes again revealed four maternal lineages of Korean wild boars, which corresponded to the four Korean wild boar subgroups identified previously. In an additional analysis, we supplemented the Asian wild boar network with 34 Korean and Chinese domestic pig haplotypes. We found only one haplotype, C31, that was shared by Chinese wild, Chinese domestic and Korean domestic pigs. In contrast to our expectation that Korean wild boars contributed to the gene pool of Korean native pigs, these data clearly suggest that Korean native pigs would be introduced from China after domestication from Chinese wild boars.

한국 근해 태평양난바다곤쟁이(Euphausia pacifica)의 유전적 개체군 구조 (Genetic Population Structure of Euphausia pacifica in Korean Waters)

  • 이보람;박원규;지환성;유효재
    • 한국수산과학회지
    • /
    • 제56권5호
    • /
    • pp.701-707
    • /
    • 2023
  • We investigated Euphausia pacifica population in Korean waters in 2016 By samplings for genetic structur at five stations. Three sampling stations were located in the middle of the water masses which were clustered by temperature and salinity whereas the other stations were at the boundaries of the water masses. We amplified a 566 bp region and compared it with sequences of E. pacifica distributed in other waters. Sequences were classified two clades, and a clade was formed in the station E. Genetic distance of station E was close to E. pacifica present in Bering Sea, while it was distant to E. pacifica present in Yellow Sea near China. In genetic analysis, seven haplotypes were formed. Hap-1 and Hap-2 were shared in all five stations, while Hap-3 was shared in station W and WS. Four independent haplotypes were present in station E. Haplotype and nucleotide diversity were the highest in station E and the lowest in station S. The FST distances between station E and other stations were the highest, but distances among other stations were low. As a result, we concluded that E. pacifica, which is distributed in Korean waters, has a genetic population differentiation in the East Sea (station E).

Subspecific Status of the Korean Tiger Inferred by Ancient DNA Analysis

  • Lee, Mu-Yeong;Hyun, Jee-Yun;Lee, Seo-Jin;An, Jung-Hwa;Lee, Eun-Ok;Min, Mi-Sook;Kimura, Junpei;Kawada, Shin-Ichiro;Kurihara, Nozomi;Luo, Shu-Jin;O'Brien, Stephen J.;Johnson, Warren E.;Lee, Hang
    • Animal Systematics, Evolution and Diversity
    • /
    • 제28권1호
    • /
    • pp.48-53
    • /
    • 2012
  • The tiger population that once inhabited the Korean peninsula was initially considered a unique subspecies (Panthera tigris coreensis), distinct from the Amur tiger of the Russian Far East (P. t. altaica). However, in the following decades, the population of P. t. coreensis was classified as P. t. altaica and hence forth the two populations have been considered the same subspecies. From an ecological point of view, the classification of the Korean tiger population as P. t. altaica is a plausible conclusion. Historically, there were no major dispersal barriers between the Korean peninsula and the habitat of Amur tigers in Far Eastern Russia and northeastern China that might prevent gene flow, especially for a large carnivore with long-distance dispersal abilities. However, there has yet to be a genetic study to confirm the subspecific status of the Korean tiger. Bone samples from four tigers originally caught in the Korean peninsula were collected from two museums in Japan and the United States. Eight mitochondrial gene fragments were sequenced and compared to previously published tiger subspecies' mtDNA sequences to assess the phylogenetic relationship of the Korean tiger. Three individuals shared an identical haplotype with the Amur tigers. One specimen grouped with Malayan tigers, perhaps due to misidentification or mislabeling of the sample. Our results support the conclusion that the Korean tiger should be classified as P. t. altaica, which has important implications for the conservation and reintroduction of Korean tigers.