• 제목/요약/키워드: moving sliding

검색결과 151건 처리시간 0.023초

Robust State Estimation Based on Sliding Mode Observer for Aeroelastic System

  • Jeong In-Joo;Na Sungsoo;Kim Myung-Hyun;Shim Jae-Hong;Oh Byung-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.540-548
    • /
    • 2005
  • This paper concerns the application and demonstration of sliding mode observer for aeroelastic system, which is robust to model uncertainty including mass and stiffness of the system and various disturbances. The performance of a sliding mode observer is compared with that of a conventional Kalman filter to demonstrate robustness and disturbance decoupling characteristics. Aeroelastic instability may occur when an elastic structure is moving even in subcritical flow speed region. Simulation results using sliding mode observer are presented to control aeroelastic response of flapped wing system due to various external excitations as well as model uncertainty and sinusoidal disturbances in subcritical incompressible flow region.

완만한 곡선경로 추적용 이륜 용접이동로봇의 제어 (Control of Two-Wheeled Welding Mobile Robot For Tracking a Smooth Curved Welding Path)

  • ;;김학경;김상봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundary function is proposed and applied to a two-wheeled voiding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the new sliding is proposed to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system will be shown through the Lyapunov method. The simulations is shown to prove the effectiveness of the proposed controller.

  • PDF

빠르고 강건한 추적제어를 위한 새로운 슬라이딩 서피스 설계 (Design of new sliding surfaces for fast and robust tracking control)

  • 최승복;박동원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1045-1050
    • /
    • 1992
  • A new sliding surface for a viaraible structure control(VSC) law is emplyed to achieve fast and robust path tracking in a class of second-order nonlinear unceratin dynamical systems. The surface onitialy passes arbitrarily given initial conditions and subsequently moves towards a predetermined surface via rotaiting or/and shifting. We call it as a moving sliding surface(MSS). The surface is then incorporated with the VSC law which is constructed by imposing the sliding conditions in a special way. We primarily enforce the conditions which assume that once the system state is on a sliding surface that it is driven towards the zero state. Using the VSC law associatied with the MSS, it is shown that the tracking behavoirs are remarkably improved in the sene of the fastness and the robustness.

  • PDF

좌우유동 방지를 위한 대용량 단일 슬라이드 레일 시스템 개발 (Development of Single Slide-Rail System for Reduction of Unbalanced Sliding Motion)

  • 김민훈;박기홍;정원철;예성봉;박상후
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.490-495
    • /
    • 2011
  • A slide-rail system is widely used in home appliances, furniture, mechanical rigs, and so many other applications; due to its high strength and performance for easy moving heavy objectives. In general, a pair of side slide-rails is set on both sides of a drawer to support and move it. So an unbalanced sliding motion can occur during opening and closing a drawer with pull and push force. To settle this problem, single central slide-rail having three collapsible rail-bodies was firstly proposed in this work. 'H'-beam shaped rail-body was newly designed to have enough bending and twisting strength. The experimental test showed that the proposed rail could be applied to large-size home appliances for easy moving drawer with heavy weight.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

Dynamic bivariate correlation methods comparison study in fMRI

  • Jaehee Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권1호
    • /
    • pp.87-104
    • /
    • 2024
  • Most functional magnetic resonance imaging (fMRI) studies in resting state have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant. However, increased interest has recently been in quantifying possible dynamic changes in FC during fMRI experiments. FC study may provide insight into the fundamental workings of brain networks to brain activity. In this work, we focus on the specific problem of estimating the dynamic behavior of pairwise correlations between time courses extracted from two different brain regions. We compare the sliding-window techniques such as moving average (MA) and exponentially weighted moving average (EWMA), dynamic causality with vector autoregressive (VAR) model, dynamic conditional correlation (DCC) based on volatility, and the proposed alternative methods to use differencing and recursive residuals. We investigate the properties of those techniques in a series of simulation studies. We also provide an application with major depressive disorder (MDD) patient fMRI data to demonstrate studying dynamic correlations.

Two-Wheeled Welding Mobile Robot for Tracking a Smooth Curved Welding Path Using Adaptive Sliding-Mode Control Technique

  • Dung, Ngo Manh;Duy, Vo Hoang;Phuong, Nguyen Thanh;Kim, Sang-Bong;Oh, Myung-Suck
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.283-294
    • /
    • 2007
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundizing function is proposed and applied to a two-wheeled welding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the sliding surface vector including new boundizing function and the adaptation laws are chosen to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system is shown through the Lyapunov method. In addition, a simple way of measuring the errors by potentiometers is introduced. The simulations and experimental results are shown to prove the effectiveness of the proposed controller.

이동 슬라이딩 서피스를 이용한 로봇의 빠른 추적제어

  • 최승복;정재천;박동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.164-168
    • /
    • 2001
  • In this paper, we introduce a new sliding surface adaptable to arbitrary initial conditions. The surface is initially designed to pass given intial errors and subsequently moves towards a predetermined surface via rotating or/and shifting. We call it as a moving sliding surface (MSS) comparing with the conventional ones, for instances, employed by Slotine and Sastry. Using the MSS, it is shown that the tracking is much faster than conventional one without increasing the magnitude of discontinuous control gain. To demonstrate some advantages of the proposed method, we apply the MSS to the path tracking control of a two-degree-of-freedom robotic manipulator subjected to external disturbances.

생체내 미소의료기기에 대한 Biotribology 기초연구 (Fundamental Biotribological Characteristics between Biomaterials and Small Intestine)

  • 김영태;권은영;정효일;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1361-1364
    • /
    • 2004
  • There is a need for fundamental understanding of biotribological characteristics of various biomaterials sliding against biological materials in order to develop a moving mechanism of medical microsystems having high energy efficiency. A special experimental equipment was designed and built to study the frictional behavior of various biomaterials sliding against a small intestine specimen of a pig. Friction experiments for six biomaterials were performed. Particularly, the effects of load and speed on frictional behavior were investigated. The results of this work will aid in the development of the actuator for a self-propelling micro-endoscope.

  • PDF

얇은 layer가 존재하는 접촉표면의 열적거동에 대한 연구 (A Study on the Thermal Behaviour of Layered Solids in Sliding Contacts)

  • 안효석
    • Tribology and Lubricants
    • /
    • 제5권2호
    • /
    • pp.42-47
    • /
    • 1989
  • The thermal behaviour of layerd solids, typified in practice by surface coated materials, is evaluated for the specific case of a fast moving heat source. This is intended to represent the particular instance of solids in sliding contact and the consequences of friction. The finite difference method has been utilised to establish the temperature distributions at the surface and also the sub-surface region for coating materials which are either less conductive or more conductive than the substrate to which they are attached. The effects of variation in layer thickness, and also the load, speed and friction coefficient, are evaluated.