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Control of Two-Wheeled Welding Mobile Robot For
Tracking a Smooth Curved Welding Path
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Abstract : In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding
surface vector including new boundary function is proposed and applied to a two-wheeled welding mobile
robot (WMR). This controller makes the welding point of WMR achicve tracking a reference point which
is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is
considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed
controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To
design the controller, the tracking error vector is defined, and then the new sliding is proposed to guarantee
that the error vector converges to zcro asymptotically. The stability of the dynamic system will be shown
through the Lyapunov method. The simulations is shown to prove the effectiveness of the proposed

controller.
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1. THE WMR SYSTEM The model of the WMR as shown in Fig. 2.
In this section, the kinematic and dynamic v A
models of the WMR are considered with . Reference point \} Teference
nonholonomic constraints  system. The WMR is P 0, ¢ welding path
modcled under the following assumptions: ¥ -4 <
1. A torch slider is controlled by torch-slide- N4 AN s
L. L Welding point C /](( N
-driving motor and located so as to coincide s
with the axis through the center of two driving Yo RSN,
wheels, b o\
. Torch holder b
2. A magnet is set up at the bottom of the
robot’s center to avoid slipping, (g
3. The uncertainties and external disturbance are ¥ uw/‘\ - #2<5 \“¢
assumed to be unknown but slowly varying, so N7 1
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Fig. 2 WMR configuration
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their derivatives are nearly to be zero.

1.1 Kinematic Model of The WMR

The kinematic equation of the welding point
Wxy,¥w) fixed on the torch holder can be derived
from the WMR’s center C(x.») in Fig. 2 as
following:

Welding wire
feagar ofthe
welding system
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Fig. 1 Configuration of the WMR The derivative of (8) yields
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X, | |cosg —icosg ~ising

9, |=|sing ~-Ising H+ icosg

6l lo 1 |¥ o (2)
where [ is controlled by torch-slide-driving motor.

The coordinates (x,,yr) and the reference

heading angle #. of the reference point R, which
is moving on the reference welding path with the

desired constant satisfies  the

following equations:

velocity of VY.,

Xp =V, cOSd,
¥, =V, sing,

¢r =Wy (3)
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In Fig.2, the error vector e=[e.e.e] can be
expressed as follows:

e cosg sing Of|x, —x
e, |=|—sing cos¢g Oy ~y
e 0 0 1||¢-¢ (4)

1.2 Dynamic Model of The WMR

The real dynamic equation of the welding
mobile robot with the external disturbances can be
derived from (15) as follows:

M(q)z+V(q,q)z+T, =T (5)

By a feedback linearization of the system, the

controller vector ueR™™' is defined by
computed-torque method as follows (Yang and Kim,
1999)

T=M(q)z, + V(q,9)z+M(q)u (6)

2. ADAPTIVE SLIDING—-MODE
CONTROLLER DESIGN

Our objective is to design a controller so that
the welding point W tracks the reference point R

at a desired constant velocity of welding V.. So
the designed controller makes the WMR achieve
e—>0 as I > 0,

The sliding surfaces are defined as follows:

s_[s,]_{ é +ke, :l
S, ey, +hye, + k(e e,

where a boundary function ¥() is as follows:

(7)

01 if Jef<e
w(e,) =410 if Je,|22¢
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Fig. 3 Characteristic of ¥() function.

The following adaptation law and controller
vector u are proposed to stable the sliding surface
vector and make e —0 as [ —> 0,

p=L"s(t) (9

. |:(é2 +Dw + (e, + Do ~ v, é, sin ez}
0

+ kié, +Qs +|P|sgn(s)  (10)
koéy +k;p(ey)é,

3. SIMULATION RESULTS:

Fig. 7 Tracking error vector with initial error
vector €
Fig. 4. shows tracking errors of the
Fig.5 shows the movement of the WMR

WMR.
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Fig. 4 Tracking error vector
at the beginning

Fig. 5 Movement of
the WMR along the
reference welding path
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