International Journal of Internet, Broadcasting and Communication
/
v.14
no.1
/
pp.95-104
/
2022
A TPR-tree is a well-known indexing structure that is developed to answer queries about the current or future time locations of moving objects. For the purpose of space efficiency, the TPR-tree employs the notion of VBR (velocity bounding rectangle)so that a regionalrectangle presents varying positions of a group of moving objects. Since the rectangle computed from a VBR always encloses the possible maximum range of an indexed object group, a search process only has to follow VBR-based rectangles overlapped with a given query range, while searching toward candidate leaf nodes. Although the TPR-tree index shows up its space efficiency, it easily suffers from the problem of dead space that results from fast and constant expansions of VBR-based rectangles. Against this, the TPR-tree index is enforced to update leaf nodes for reducing dead spaces within them. Such an update-prone feature of the TPR-tree becomes more problematic when the tree is saved in flash storage. This is because flash storage has very expensive update costs. To solve this problem, we propose a new Bloom filter based caching scheme that is useful for reducing updates in a flash TPR-tree. Since the proposed scheme can efficiently control the frequency of updates on a leaf node, it can offer good performance for indexing moving objects in modern flash storage.
To manage and query moving objects efficiently in MMDBMS, a memory index structure should be used. The most popular index structure for storing trajectories of moving objects is 3DR-tree. The 3DR-tree also can be used for MMDBMS. However, the volume of data can exceed the capacity of physical memory since moving objects report their locations continuously. To accommodate new location reports, old trajectories should be migrated to disk or purged from memory. This paper focuses on migration policies of a main memory index structure. Migration policies consist of two steps: (i) node selection, (ii) node placement. The first step (node selection) selects nodes that should be migrated to disk. The criteria of selection are the performance of insertion or query. The second step (node placement) determines the order of nodes written to disk. This step can be thought as dynamic declustering policies.
Journal of Korea Spatial Information System Society
/
v.6
no.2
s.12
/
pp.3-13
/
2004
The TPR-tree exploits bounding rectangles based on the function of time in order to index moving objects. As time passes on, each edge of a BR expands with the fastest velocity vector. Since the expansion of the BR results in a serious overlaps between neighboring nodes, the performance of range query is getting worse. In this paper, we propose schemes to reorganize bounding rectangles of nodes. When inserting a moving object, we exploit a forced merging scheme to merge two overlapped nodes and re-split it. When deleting a moving object, we used forced reinsertion schemes to reinsert other objects of a node into a tree. The forced reinsertion schemes are classified into a deleted node reinsertion scheme and an overlapped nodes reinsertion scheme. The overlapped nodes reinsertion scheme outperforms the forced merging scheme and the deleted node reinsertion scheme in all experiments.
In this paper, we address an efficient processing scheme for k-nearest neighbor queries to retrieve k static objects in road network databases. Existing methods cannot expect a query processing speed-up by index structures in road network databases, since it is impossible to build an index by the network distance, which cannot meet the triangular inequality requirement, essential for index creation, but only possible in a totally ordered set. Thus, these previous methods suffer from a serious performance degradation in query processing. Another method using pre-computed network distances also suffers from a serious storage overhead to maintain a huge amount of pre-computed network distances. To solve these performance and storage problems at the same time, this paper proposes a novel approach that creates an index for moving objects by approximating their network distances and efficiently processes k-nearest neighbor queries by means of the approximate index. For this approach, we proposed a systematic way of mapping each moving object on a road network into the corresponding absolute position in the m-dimensional space. To meet the triangular inequality this paper proposes a new notion of average network distance, and uses FastMap to map moving objects to their corresponding points in the m-dimensional space. After then, we present an approximate indexing algorithm to build an R*-tree, a multidimensional index, on the m-dimensional points of moving objects. The proposed scheme presents a query processing algorithm capable of efficiently evaluating k-nearest neighbor queries by finding k-nearest points (i.e., k-nearest moving objects) from the m-dimensional index. Finally, a variety of extensive experiments verifies the performance enhancement of the proposed approach by performing especially for the real-life road network databases.
Journal of Korea Spatial Information System Society
/
v.8
no.2
s.17
/
pp.53-73
/
2006
Recently, the need for Location-Based Services (LBS) has increased due to the development of mobile devices, such as PDAs, cellular phones and GPS. As a moving object database that stores and manages the positions of moving objects is the core technology of LBS, the scheme for maintaining the main memory DBMS to the server is necessary to store and process frequent reported positions of moving objects efficiently. However, previous works on a moving object database have studied mostly a disk based moving object index that is not guaranteed to work efficiently in the main memory DBMS because these indexes did not consider characteristics of the main memory. It is necessary to study the main memory index scheme for a moving object database. In this paper, we propose the main memory index scheme based on the R-tree for storing and processing positions of moving objects efficiently in the main memory DBMS. The proposed index scheme, which uses a growing node structure, prevents the splitting cost from increasing by delaying the node splitting when a node overflows. The proposed scheme also improves the search performance by using a MergeAndSplit policy for reducing overlaps between nodes and a LargeDomainNodeSplit policy for reducing a ratio of a domain size occupied by node's MBRs. Our experiments show that the proposed index scheme outperforms the existing index scheme on the maximum 30% for range queries.
Hoang Do Thanh Tung;Lee Eung-Jae;Lee Yang-Koo;Ryu Keun-Ho
한국공간정보시스템학회:학술대회논문집
/
2004.12a
/
pp.113-116
/
2004
Assisted by high technologies of information and communication in storing and collecting moving object information, many applications have been developing technical methods to exploit databases of moving objects effectively and variously. Among them, today, Current and Anticipated Future Position Indexing methods manage current positions of moving objects in order to anticipate future positions of them or more complex future queries. They, however, strongly demand update performance as fast enough to guarantee certainty of queries as possible. In this paper, we propose a new indexing mettled derived from the TPR-tree that should has update performance considerably improved, we named it BUR-tree. In our method, index structure can be inserted, deleted, and updated with a number (or bulk) of objects simultaneously rather than one object at a time as in conventional methods. This method is intended to be applied to a traffic network in which vast number of objects, such as cars, pedestrians, moves continuously.
Spatiotemporal moving objects are changing their Positions and/or shape over time in real world. As most of the indices of moving object are based on the R-tree. they have defects of the R-tree which are dead space and overlap. Some of the indices amplify the defects of the R-tree. In the paper, to solve the problems, we propose the MPR-tree(Moving Point R-tree) using Projection operation which has more effective search than existing moving point indices on time slice query and spatiotemporal range query. The MPR-tree connects positions of the same moving objects over time by using linked list, so it processes the combined query about trajectory effectively. The usefulness of the Projection operation is confirmed during processing moving object queries and in practical use of space from experimentation to compare MPR-tree with existing indices of moving objects. The proposed MPR-tree would be useful in the LBS, the car management using GPS, and the navigation system.
Spatio-temporal databases have been mostly studied in the area of access methods. However, without considering an extraordinary update maintenance overhead after building up a spatio-temporal index, most indexing techniques have focused on fast query processing only. In this paper, we propose an efficient update management method that reduces the number of disk accesses required in order to apply the updates of moving objects to a spatio-temporal index. We consider realistic update patterns that can represent the movements of objects properly. We present a memory based structure that can efficiently maintain a small number of very frequently updating objects. For an experimental environment with realistic update patterns, the number of disk accesses of our method is about 40% lower than that of a general update method of existing spatio-temporal indexes.
Moving objects' trajectories play an important role in indexing video data on their content and semantics for content-based video retrieval. In this paper, we propose new similar sub-trajectory retrieval schemes based on k-warping algorithm for efficient retrieval on moving objects' trajectories in video data. The proposed schemes are fixed-replication similar sub-trajectory retrieval(FRSR) and variable-replication similar sub-trajectory retrieval(VRSR). The former can replicate motions with a fixed number for all motions being composed of the trajectory. The latter can replicate motions with a variable number. Our schemes support multiple properties including direction, distance, and time interval as well as a single property of direction, which is mainly used for modeling moving objects' trajectories. Finally, we show from our experiment that our schemes outperform Li's scheme(no-warping) and Shan's scheme(infinite-warping) in terns of precision and recall measures.
Because moving objects usually move on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. But, because FNR-tree and MON-tree are stored by the unit of the moving object's segment, they can't support the whole moving objects' trajectory. In this paper, we propose an efficient trajectory index structure, named Trajectory of Moving objects on Network Tree(TMN Tree), for moving objects. For this, we divide moving object data into spatial and temporal attribute, and preserve moving objects' trajectory. Then, we design index structure which supports not only range query but trajectory query. In addition, we divide user queries into spatio-temporal area based trajectory query, similar-trajectory query, and k-nearest neighbor query. We propose query processing algorithms to support them. Finally, we show that our trajectory index structure outperforms existing tree structures like FNR-Tree and MON-Tree.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.