Migration Policies of a Main Memory Index Structure for
Moving Objects Databases

Kyounghwan An and Kwangsoo Kim
Telematics Research Division,
Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Republic of Korea
{khan, enoch}@etri.re.kr

Abstract: To manage and query moving objects efficiently in
MMDBMS, a memory index structure should be used. The
most popular index structure for storing trajectories of moving
objects is 3DR-tree. The 3DR-tree also can be used for
MMDBMS. However, the volume of data can exceed the ca-
pacity of physical memory since moving objects report their
locations continuously. To accommodate new location reports,
old trajectories should be migrated to disk or purged from
memory. This paper focuses on migration policies of a main
memory index structure. Migration policies consist of two
steps: (i) node selection, (ii) node placement. The first step
(node selection) selects nodes that should be migrated to disk.
The criteria of selection are the performance of insertion or
query. The second step (node placement) determines the order
of nodes written to disk. This step can be thought as dynamic
declustering policies.

Keywords: LBS, Moving Object, Main Memory Database.

1. Introduction

Recently, the need for LBS (Location Based Services)
is increasing due to the widespread of mobile computing
devices (e.g. PDA, ceilular phone, and notebook com-

puter) and positioning technologies (e.g. GPS and RFID).

There are many applications that need to manage and
query a large number of “moving objects” in LBS. Since
the moving objects should report their locations fre-
quently, a database system should be able to handle a
huge number of updates and queries efficiently. In such
an environment, traditional disk-resident DBMSs cannot
be used since the number of updates and queries exceeds
the capacity of the disk. To overcome the limitation,
main memory resident DBMSs (henceforth MMDBMS)
should be used to manage moving objects.

In MMDBMS, to manage and query moving objects
efficiently, a memory index structure should be used.
There were several index structures for moving objects
databases [4, 5). The most popular index structure for
storing trajectories of moving objects is 3DR-tree. How-
ever, if the index structure is used in MMDBMSs, the
volume of data can exceed the capacity of physical
memory since moving objects report their locations con-
tinuously. To accommodate new location reports, old
trajectories should be migrated to disk or purged from
memory.

This paper focuses on migration policies of a main

memory index structure. Migration policies consist of
two steps: (i) node selection, (ii) node placement. The
first step (node selection) selects nodes that should be
migrated to disk. The criteria of selection are the per-
formance of insertion or query. The second step (node
placement) determines the order of nodes written to disk.
This step can be thought as dynamic declustering poli-
cies. By using suggested migration policies, we can ob-
tain following advantages. First, a main memory index
structure can store location reports continuously without
stopping the system. Second, the performance of inser-
tions and queries can be improved.

The remainder of this paper is organized as follows. In
section 2, we examine related works. In section 3, we
define the problems when migrating nodes to disk and
section 4 presents migration policies that consist of two
steps. A summary of the paper is presented in section 5.

2. Related Works

There were studies on storing data separately in differ-
ent media [1] and migrating data [2, 3] according to the
volume of data, the frequencies of use, and the restric-
tions on processing data.

The study [1], which stores data in different media,
stores hot data in main memory based DBMS while cold
data in disk based DBMS. For example, bank applica-
tions may store account information in main memory
while customer information in disk. However, it can not
handle the situation if data accumulate over time and
exceeds physical memory capacity.

The study [2], which migrates nodes, stores current
data (nodes) in disk while migrates past data (nodes) into
optical media. Time-Split B-tree in [2] migrates a node
into optical media when a node splits in time axis. Since
it migrates a node at a time it cannot be applied to our
environment which requires minimum disk I/O. Also, it
is inefficient in main memory environment since there
exist repeated data in the nodes.

The study [3], which migrates data, migrate data into
different media according to the semantic of data by ad-
ministrator or DBMS. However, it does not suggest the
method migrating index nodes.

-673-

3. Problem Definition

Migration policy migrates part of main memory index
from memory to disk when the volume of index structure
exceeds given limitation. After the migration, nodes ex-
ist both in main memory and in disk. In this section, we
define the problems when migrating nodes into disk.

1) Pointers in nodes

Since nodes can exist both in main memory and in
disk after migration, a node can have two physical
pointer types: (1) main memory pointer, (i1) disk pointer.
Logical types of pointers can be classified into four cate-
gories according to the direction they point.

Table 1. Logical Types of Pointers
Direction Name of Pointer
Memory = Memory m2m pointer
Memory = Disk m2d pointer
Disk 2 Memory d2m pointer
Disk = Disk d2d pointer

When a memory resident node (henceforth memory
node) points to other memory node, it is called m2m
pointer. Usually main memory based indices have m2m
pointers. When a disk resident node (henceforth disk
node) points to other disk node, it is called d2d pointer.
Usually disk based indices have d2d pointers. When a
node points a node of other type, it is called m2d or d2m
pointers. Two pointers are new types that do not exist in
the previous indices. In those pointers, d2m pointers
have the following problems.

| Memory node
J— 1 Disk node
: [a
dd . A--boolo
..... o iazdad {2m
) ()

Fig. 1. Problem of d2m pointer

rmadd

First, after parts of the nodes migrate to disk by migra-
tion policies (in Fig 1, nodes of dotted line), several
types of pointers can exist. In Fig 1, there is a d2m
pointer. The d2m pointer has the following problems.
First, if node b should be migrated to disk, node a should
be loaded into memory to update a pointer. Second, if
node b should be referenced by a query, node a should
be loaded before accessing node b.

It is inefficient to load a disk node to access a memory
node. To prevent the situation, migration policy should
consider avoiding d2m pointers.

2) Migration

A migration policy should minimize disk /O when
migrating nodes into disk or referencing disk nodes by
queries. Also it should operate non-blocking mode since
location reports should be processed in a limited time
constraint. To achieve the goals the followings are
should be considered.

= Migration Time

Main purpose of migration policies is to ensure mem-
ory space when location reports are inserted into an in-
dex structure. If free memory space is below the given
threshold, migration of nodes from memory to disk
should occur. Migration time depends on both the
threshold and granularity of migration.

= Node Selection

Selecting a candidate node for migration is important
since it affects the query performance. If queries access
disk nodes frequently, the performance will deteriorate.
It would be better to choose nodes that will not be refer-
enced by queries. In general, more recent trajectories
will be referenced frequently than old trajectories. Node
selection algorithm should consider the properties of
moving objects databases.

® Granularity of Migration

If migration policy writes a node at a time, the system
will suffer from disk I/O. Thus, it is necessary to write
several nodes at a time. If granularity is large, more
memory space will be needed since the memory space
that is occupied by migration nodes can not be used for
insertion algorithm of index structure. However, large
granularity will be more efficient when loading nodes
into memory since some dynamic clustering will be ap-
plied while migrating nodes.

4. Migration Policies
1) Steps of Migration Policies

The following figure shows the steps of the migration

policies.
resident

disk
resident

Migration Policy

Flush Buffer []uaus] T]
e

@Disk Placement

| Disk

When free memory space is below given threshold,

DMigration

Fig. 2. Migration Policy

—674 -

migration occurs. The first step of migration policy is to
select candidate nodes to migrate. If nodes are selected,
the second step is to rearrange nodes in flush buffer to
improve query performance. Finally, rearranged nodes
are written to disk. Before the final step, pointers are
translated from memory pointers to disk pointers. All
steps operate in a non-blocking mode by flush daemon.
Node selection policy and disk placement policy can be
tightly coupled or loosely coupled. It means nodes can
be selected considering disk placement or not.

2) Node Selection Policy

There can be several methods to select candidate
nodes. To avoid d2m pointer, node selection policies
should not select a node until all child nodes become
disk resident. Figure 3 shows the example.

candidate node

/N

BN EEN NN EER

Fig. 3. Principle of Node Selection

In fig 3, although a non-leaf node is selected as a can-
didate node, it cannot be migrated to disk since it has
child nodes that reside in memory. If the candidate node
migrates to disk, d2m pointers will be generated. Node
selection policy should proceed until it finds a node that
does not make d2m pointers.

In this paper, we suggest three node selection policies
that follow above principle.

= NSP1: Selection by Creation Time

The first node selection policy is to choose a node ac-
cording to the creation time of a node. Since it is sim-
plest approach, there is no overhead when selecting
nodes.

= NSP2: Selection by Node Time

The second node selection policy is to choose a node
according to the time value of node’s MBB. Since the
probability of referencing a node is not by the creation
time of a node but by the time value of MBB, it is more
appropriate to take this approach. To select a candidate
node, it traverses index structure until it finds a node
which has oldest time value of MBB.

= NSP3: Selection by LRU

The final approach is to choose a node according to
LRU policy. In this approach, a least recently used node
is selected. This approach can be good if insertions and
queries are made on main memory. However, it can be
inefficient if insertions and queries are made on disk
since it may not be good for the disk placement policy.

3) Node Placement Policy

There can be several methods to place candidate nodes
mto disk. The purpose of node placement policy is to
reduce disk I/O when queries are made on disk resident
nodes.

In this paper, we suggest two node placement policies.

* NPP1: Ordering by Node Selection

The first approach is to order nodes by the order of
node selection. This approach can be used if there is low
probability of selecting disk resident nodes. This ap-
proach can be very inefficient if there are many chances
to reference disk resident nodes (old trajectories).

» NPP2: Ordering by Index Structure

This approach is to order nodes according to index
structure. This approach is good when there are many
chances to reference disk resident nodes. Since it is pos-
sible to load several nodes at a time (bulk loading), disk
1/0 time is reduced than other approach. In this approach,
the granularity becomes subtree. The following figure
shows the example.

[T

@ e o © o

Fig. 4. Ordering by index structure

In fig 4, granularity of migration is decided as two
level of the tree (deciding granularity is explained later).
If a seed node is selected, a subtree is decided containing
the seed node. After the subtree is decided, nodes are
ordered from parent node to child nodes according to the
order of breadth first search.

4) Migration Time

Migration occurs when free memory space becomes
under given threshold. Following formula explains mi-
gration time.

h~|
Z(FxU)"zgi—Nxa

n=0 P

(o =1) (1)

In formula (1), let h be the tree height, F be fanout,
and U be node utilization. M means free memory space,
S, means a size of one page, N is the number of page
that is needed to migrate (granularity). o (stability fac-
tor) means the number of free space for migration. The
more o becomes greater, the more the system will oper-

~675-

ate stable.
5) Granularity of Migration

Granularity of Migration (N) is determined to prevent
the system from blocking. To guarantee stable operation
of the server, the number of moving objects and the fre-
quency of reporting locations should be considered. The
following equations give us the granularity of migration.

Let m be the number of moving objects to be managed
and T; be the interval of reporting locations. Then A is
reporting rate and shown in eq. (2).

n 1 .
A=Y —
21', T)

Let F be the fanout of the tree and U be the utilization
of the tree. N is the number of page needed to migrate
and we want to obtain its value. The rate of accessing
disk (W) is expressed in eq. (3).

A 1
X—_
FxU N

3

Let Tk be the time for seeking right position in disk
and T .ner be the time for transferring one page. Then N
(granularity) should be determined by the following
formula.

C = W X (Tseek + N X T;mnsfer) < 1 (4)
6) Structure of Nodes

After the migration, an index structure can have sev-
eral types of pointers. To distinguish pointers, we use
bitmap indicating the type of a pointer in the head of a
node. When search algorithm traverses the tree, it uses
bitmap information.

Header Entry
. A
e | T | M8 | | 00O
(a) Non-leaf node
Header Entry
T;)g: id trajectory # | MBB oricniation | O O O
(b) Leaf node

Fig. 5. Structure of a Node

In case of the leaf node, the structure is similar to that
of STR-tree[4]. It has ID of line segment in a trajectory,
three dimensional MBB (Minimum Bounding Box), and
orientation of the line segment.

In case of the non-leaf node, pointer type bitmap is in-

cluded. Pointer type bitmap indicates the types of point-
ers in the entries.

In case of both non-leaf node and leaf node, node type
field is included in the header. It indicates whether the
node exist in memory or both memory and disk. A node
exists both in memory and disk when it is loaded from
disk by a query. Migration occurs when a node exist only
in memory.

5. Conclusions

Moving objects reports their locations continuously
over time. Since the volume of trajectories can be large
to be stored in main memory, part of index structure
should be migrated to disk. In this paper, we suggested
migration policies that consist of two steps: (i) node se-
lection, (ii) disk placement.

By using our algorithm, we can achieve the following
things. First, main memory based moving objects data-
base can operate continuously without blocking the sys-
tem. Second, when insertions and queries are made on
main memory and disk, it can process it efficiently since
node selection and disk placement considers the per-
formance. Qur further work is to implement the system
and compare the performance of suggested algorithms.

References

[1] D.Gawlick and D.Kinkade, “Varieties of concurrency
control in IMS/VS Fast Path,” Data Eng. Bull,,
vol.8.no.2,pp.3-10, June 1985

{21 D. Lomet and B. Salzberg, "Access Methods for Mul-
tiversion Data", Proc. of SIGMOD, 1989

[3] M.Stonebraker, “Managing persistent objects in a multi-
level store,” in Proc. ACM SIGMOD Conf., Denver, CO,
May 1991, pp2-11

(4] D.Pfoser, C.S.Jensen, and Y.Theodoridis, “Novel Ap-
proaches in Query Processing for Moving Objects,”In
Proc.of the VLDB Conference, pp.395-406, 2000

[5] N.Beckmann, H.-P.Kriegel, R.Schneider and B. Seeger,
“The R*-tree: An efficient and robust access
method for points and rectangles,” Proceedings of ACM
SIGMOD Int'l. Conf. on Management of Data, pp. 322-
331, 1990

[6] Giiting, R., Bohlen, M., Erwig, M., Jensen, C.
S.,Lorentzos,N.,Schneider, M., and Vazirgiannis, M.: A
Foundation for Representing and Querying Moving Ob-
jects. ACM Transactions on Database Systems, to appear,
2000

[7]1 Hector Garcia-Molina and Kenneth Salem. Main memory
database systems: An overview. IEEE Trans. Knowledge
Data Eng., 4:509-516, 1992

[8] Li Chen,Rupesh Choubey and Elke A Rundensteiner,
“Merging R-Trees: Efficient Strategies for Local Bulk In-
sertion”, Geoinformatica Volume6 Issuel, 2002

[9] T.J.Lehman and M.J.Carey,”A Study of index structures
for main memory database management systems,” in
Proc.12th Conf. on VLDB,Aug.1986

~676—

