As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.101-106
/
2023
In this busy world actually stress is continuously grow up in research and monitoring social websites. The social interaction is a process by which people act and react in relation with each other like play, fight, dance we can find social interactions. In this we find social structure means maintain the relationships among peoples and group of peoples. Its a limit and depends on its behavior. Because relationships established on expectations of every one involve depending on social network. There is lot of difference between emotional pain and physical pain. When you feel stress on physical body we all feel with tensions, stress on physical consequences, physical effects on our health. When we work on social network websites, developments or any research related information retrieving etc. our brain is going into stress. Actually by social network interactions like watching movies, online shopping, online marketing, online business here we observe sentiment analysis of movie reviews and feedback of customers either positive/negative. In movies there we can observe peoples reaction with each other it depends on actions in film like fights, dances, dialogues, content. Here we can analysis of stress on brain different actions of movie reviews. All these movie review analysis and stress on brain can calculated by machine learning techniques. Actually in target oriented business, the persons who are working in marketing always their brain in stress condition their emotional conditions are different at different times. In this paper how does brain deal with stress management. In software industries when developers are work at home, connected with clients in online work they gone under stress. And their emotional levels and stress levels always changes regarding work communication. In this paper we represent emotional intelligence with stress based analysis using machine learning techniques in social networks. It is ability of the person to be aware on your own emotions or feeling as well as feelings or emotions of the others use this awareness to manage self and your relationships. social interactions is not only about you its about every one can interacting and their expectations too. It about maintaining performance. Performance is sociological understanding how people can interact and a key to know analysis of social interactions. It is always to maintain successful interactions and inline expectations. That is to satisfy the audience. So people careful to control all of these and maintain impression management.
Assuming that the whole meaning of a document is a composition of the meanings of each part, this paper proposes to study the automatic grading of movie reviews which contain sentimental expressions. This will be accomplished by calculating the values of semantic segments and performing data classification for each review. The ARSSA(The Automatic Rating System for Sentiment analysis using an Appraisal dictionary) system is an effort to model decision making processes in a manner similar to that of the human mind. This aims to resolve the discontinuity between the numerical ranking and textual rationalization present in the binary structure of the current review rating system: {rate: review}. This model can be realized by performing analysis on the abstract menas extracted from each review. The performance of this system was experimentally calculated by performing a 10-fold Cross-Validation test of 1000 reviews obtained from the Naver Movie site. The system achieved an 85% F1 Score when compared to predefined values using a predefined appraisal dictionary.
The purpose of this study is to clarify the impact of information contents at online purchase sites of movie merchandise. The results of this study are as follows: 1) Movie-understanding information(synopsis, actors, reviews) has a meaningful influence on information service satisfaction irrespective of consumer involvement; 2) Movie-understanding and movie-going information(time, place, price, purchasing method) are alike in having a meaningful influence on online purchasing intention. However, movie-going information has a meaningful influence in case of lower consumer involvement, while movie-understanding information has a meaningful influence in case of higher consumer involvement.; 3) Information service satisfaction gives a strong influence on online purchasing intention irrespective of the level of consumer involvement. In conclusion, there is a need to improve diversity and quality of movie-understanding information to enhance consumer satisfaction. Also, it will be necessary to improve movie-understanding and movie-going information in order to enhance online purchasing intention. These results are expected to give an insight to build a creative marketing strategy of online purchase sites of movie merchandise.
Kim, Min Jeong;Park, Doo-Soon;Hong, Min;Lee, HwaMin
KIPS Transactions on Computer and Communication Systems
/
v.4
no.9
/
pp.289-296
/
2015
The explosive growth of information has been difficult for users to get an appropriate information in time. The various ways of new services to solve problems has been provided. As customized service is being magnified, the personalized recommendation system has been important issue. Collaborative filtering system in the recommendation system is widely used, and it is the most successful process in the recommendation system. As the recommendation is based on customers' profile, there can be sparsity and cold-start problems. In this paper, we propose personalized movie recommendation system using collaborative filtering techniques and context-based techniques. The context-based technique is the recommendation method that considers user's environment in term of time, emotion and location, and it can reflect user's preferences depending on the various environments. In order to utilize the context-based technique, this paper uses the human emotion, and uses movie reviews which are effective way to identify subjective individual information. In this paper, this proposed method shows outperforming existing collaborative filtering methods.
A great number of customers, who want to watch movies usually check out online reviews before choosing what to watch a movie. The most representative online media that customers consult are portal sites and SNS (Social Network Service). Although there have been numerous studies on online eWOM (e-Word of Mouth) and the effects of online media in businesses, it remains a question that which media is best for WOM (Word of Mouth) when selecting movies. This research examines customer's intention for consulting eWOM and for watching movies according to the number and tendency of online replies. We have compared portal sites and SNS about information of movie. The study shows that a large number of positive replies can affect the intention for WOM and choosing movies. Facebook has more influence than portal sites when choosing what to watch when replies consist of large and positive comments. However, there is no difference between the two types of media when they consist of negative comments.
Journal of Advanced Information Technology and Convergence
/
v.9
no.2
/
pp.41-54
/
2019
The cinema circuit is facing a digital, network, and mobile age, which expands non-theater accessibility to movies. Application platforms are situated as the most competitive business model that provide digital content such as games, music, books, and movies. Consumers can acquire content-related information not just offline, but online as well. Therefore, item information provided by application platforms is required. The information provided by application platforms consists of richly descriptive information such as storyline summary, consumer reviews, and related articles, while non-descriptive normative information covers data such as sales ranking, release date, genre, rental or purchase cost, domestic/foreign classification, consumer rating, number of consumer ratings, film rating, and so on. In this study, we surveyed and analyzed statistically the correlation between real-time sales ranking and other comparable non-descriptive information.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.3
/
pp.292-297
/
2014
As a Social Network Service (SNS) has become an integral part of our everyday lives, millions of users can express their opinion and share information regardless of time and place. Hence sentiment analysis using micro-blogs has been studied in various field to know people's opinion on particular topics. Most of previous researches on movie reviews consider only positive and negative sentiment and use it to predict movie rating. As people feel not only positive and negative but also various emotion, the sentiment that people feel while watching a movie need to be classified in more detail to extract more information than personal preference. We measure sentiment distributions of each movie from tweets according to the Thayer's model. Then, we find similar movies by calculating similarity between each sentiment distributions. Through the experiments, we verify that our method using micro-blogs performs better than using only genre information of movies.
Shin, Noo Ri;Kim, TaeHyeon;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
International Journal of Advanced Culture Technology
/
v.9
no.2
/
pp.86-90
/
2021
Sentiment refers to a person's thoughts, opinions, and feelings toward an object. Sentiment analysis is a process of collecting opinions on a specific target and classifying them according to their emotions, and applies to opinion mining that analyzes product reviews and reviews on the web. Companies and users can grasp the opinions of public opinion and come up with a way to do so. Recently, natural language processing models using the Transformer structure have appeared, and Google's BERT is a representative example. Afterwards, various models came out by remodeling the BERT. Among them, the Facebook AI team unveiled the XLM-R (XLM-RoBERTa), an upgraded XLM model. XLM-R solved the data limitation and the curse of multilinguality by training XLM with 2TB or more refined CC (CommonCrawl), not Wikipedia data. This model showed that the multilingual model has similar performance to the single language model when it is trained by adjusting the size of the model and the data required for training. Therefore, in this paper, we study the improvement of Korean sentiment analysis performed using a pre-trained XLM-R model that solved curse of multilinguality and improved performance.
Journal of Information Technology Applications and Management
/
v.30
no.4
/
pp.77-86
/
2023
This study conducted sentiment analysis on Hong Kong cinema from two distinct eras, pre-2000 and post-2000, examining audience preferences by comparing keywords from movie reviews. Before 2000, positive keywords like 'actors,' 'performance,' and 'atmosphere' revealed the importance of actors' popularity and their performances, while negative keywords such as 'forced' and 'violence' pointed out narrative issues. In contrast, post-2000 cinema emphasized keywords like 'scale,' 'drama,' and 'Yang Yang,' highlighting production scale and engaging narratives as key factors. Negative keywords included 'story,' 'cheesy,' 'acting,' and 'budget,' indicating challenges in storytelling and content quality. Word2Vec analysis further highlighted differences in acting quality and emotional engagement. Pre-2000 cinema focused on 'elegance' and 'excellence' in acting, while post-2000 cinema leaned towards 'tediousness' and 'awkwardness.' In summary, this research underscores the importance of actors, storytelling, and audience empathy in Hong Kong cinema's success. The industry has evolved, with a shift from actors to production quality. These findings have implications for the broader Chinese film industry, emphasizing the need for engaging narratives and quality acting to thrive in evolving cinematic landscapes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.