• Title/Summary/Keyword: movie reviews

Search Result 87, Processing Time 0.024 seconds

Research on the Movie Reviews Regarded as Unsuccessful in Box Office Outcomes in Korea: Based on Big Data Posted on Naver Movie Portal

  • Jeon, Ho-Seong
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.3
    • /
    • pp.51-69
    • /
    • 2021
  • Purpose - Based on literature studies of movie reviews and movie ratings, this study raised two research questions on the contents of online word of mouth and the number of movie screens as mediator variables. Research question 1 wanted to figure out which topics of word groups had a positive or negative impact on movie ratings. Research question 2 tried to identify the role of the number of movie screens between movie ratings and box office outcomes. Design/methodology/approach - Through R program, this study collected about 82,000 movie reviews and movie ratings posted on Naver's movie website to examine the role of online word of mouths and movie screen counts in 10 movies that were considered commercially unsuccessful with fewer than 2 million viewers despite securing about 1,000 movie screens. To confirm research question 1, topic modeling, a text mining technique, was conducted on movie reviews. In addition, this study linked the movie ratings posted on Naver with information of KOBIS by date, to identify the research question 2. Findings - Through topic modeling, 5 topics were identified. Topics found in this study were largely organized into two groups, the content of the movie (topic 1, 2, 3) and the evaluation of the movie (topics 4, 5). When analyzing the relationship between movie reviews and movie ratings with 5 mediators identified in topic modeling to probe research question 1, the topic word groups related to topic 2, 3 and 5 appeared having a negative effect on the netizen's movie ratings. In addition, by connecting two secondary data by date, analysis for research question 2 was implemented. The outcomes showed that the causal relationship between movie ratings and audience numbers was mediated by the number of movie screens. Research implications or Originality - The results suggested that the information presented in text format was harder to quantify than the information provided in scores, but if content information could be digitalized through text mining techniques, it could become variable and be analyzed to identify causality with other variables. The outcomes in research question 2 showed that movie ratings had a direct impact on the number of viewers, but also had indirect effects through changes in the number of movie screens. An interesting point is that the direct effect of movie ratings on the number of viewers is found in most American films released in Korea.

Timing of Movie Reviews and Box Office Success: Considering the Volume and Valence of the Reviews (영화평 작성시기가 영화의 주별 흥행에 미치는 영향에 관한 연구)

  • Lee, Ho;Kim, Hyun Goo;Kim, Kyung Kyu;Baek, Young Suk
    • Knowledge Management Research
    • /
    • v.16 no.2
    • /
    • pp.213-226
    • /
    • 2015
  • This study investigates the effects of the volume and valence of the movie reviews on the weekly box-office revenues. Existing literature shows that only the volume of movie reviews influences the box office results, but not valence. However, it has limitations in that it includes only the positivity or negativity ratio of the reviews, not the strength of the valence. In order to overcome such limitations, this study includes the degree of valence. This study used approximately 1.3 million reviews about 300 movies as the sample which was collected from a movie review site in an online portal, that is, movie.naver.com. SPSS was used to test the proposed model. The results of this study show different findings compared to those of the previous studies. First, the volume of movie reviews has been a consistent predictor of the box office success throughout the study periods. Second, the ratio of positive reviews has no impact on the first week's results, but shows significant effects on the box office results during the second week. Third, regarding the degree of positivity or negativity in reviews, the degree of positivity has a significant impact on the box office results only during the first week, while the degree of negativity does not have any significant effects on the results. However, from the second week, the situation is reversed; that is, only the degree of negativity has a significant impact on the box office results, but not the positivity.

Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews (사용자 영화평의 감정어휘 분석을 통한 영화검색시스템)

  • Oh, Sung-Ho;Kang, Shin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1422-1427
    • /
    • 2013
  • This paper proposed a movie retrieval system based on sentimental keywords extracted from user's movie reviews. At first, sentimental keyword dictionary is manually constructed by applying morphological analysis to user's movie reviews, and then keyword weights in the dictionary are calculated for each movie with TF-IDF. By using these results, the proposed system classify sentimental categories of movies and rank classified movies. Without reading any movie reviews, users can retrieve movies through queries composed by sentimental keywords.

A Visualization of Movie Reviews based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seulgi;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • This study visualized users reaction about movies based on keywords with high frequency. For this work, we collected data of movie reviews on . A total of six movies were selected, and we conducted the work of data gathering and preprocessing. Semantic network analysis was used to understand the relationship among keywords. Also, NetDraw, packaged with UCINET, was used for data visualization. In this study, we identified the differences in characteristics of review contents regarding each movie. The implication of this study is that we visualized movie reviews made by sentence as keywords and explored whether it is possible to construct the interface to check users' reaction at a glance. We suggest that further studies use more diverse movie reviews, and the number of reviews for each movie is used in similar quantities for research.

Simultaneous Effect between eWOM and Revenues: Korea Movie Industry (온라인 구전과 영화 매출 간 상호영향에 관한 연구: 한국 영화 산업을 중심으로)

  • Bae, Jungho;Shim, Bum Jun;Kim, Byung-Do
    • Asia Marketing Journal
    • /
    • v.12 no.2
    • /
    • pp.1-25
    • /
    • 2010
  • Motion pictures are so typical experience goods that consumers tend to look for more credible information. Hence, movie audiences consider movie viewers' reviews more important than the information provided by the film distributor. Recently many portal sites allow consumers to post their reviews and opinions so that other people check the number of consumer reviews and scores before going to the theater. There are a few previous researches studying the electronic word of mouth(eWOM) effect in the movie industry. They found that the volume of eWOM influenced the revenue of the movie significantly but the valence of eWOM did not affect it much (Liu 2006). The goal of our research is also to investigate the eWOM effects in general. But our research is different from the previous studies in several aspects. First, we study the eWOM effect in Korean movie industry. In other words, we would like to check whether we can generalize the results of the previous research across countries. The similar econometric models are applied to Korean movie data that include 746,282 consumer reviews on 439 movies. Our results show that both the valence(RATING) and the volume(LNMSG) of the eWOM influence weekly movie revenues. This result is different from the previous research findings that the volume only influences the revenue. We conjectured that the difference of self construal between Asian and American culture may explain this difference (Kitayama 1991). Asians including Koreans have more interdependent self construal than American, so that they are easily affected by other people's thought and suggestion. Hence, the valence of the eWOM affects Koreans' choice of the movie. Second, we find the critical defect of the previous eWOM models and, hence, attempt to correct it. The previous eWOM model assumes that the volume of eWOM (LNMSG) is an independent variable affecting the movie revenue (LNREV). However, the revenue can influence the volume of the eWOM. We think that treating the volume of eWOM as an independent variable a priori is too restrictive. In order to remedy this problem, we employed a simultaneous equation in which the movie revenue and the volume of the eWOM can affect each other. That is, our eWOM model assumes that the revenue (LNREV) and the volume of eWOM (LNMSG) have endogenous relationship where they influence each other. The results from this simultaneous equation model showed that the movie revenue and the eWOM volume interact each other. The movie revenue influences the eWOM volume for the entire 8 weeks. The reverse effect is more complex. Both the volume and the valence of eWOM affect the revenue in the first week, but only the volume affect the revenue for the rest of the weeks. In the first week, consumers may be curious about the movie and look for various kinds of information they can trust, so that they use the both the quantity and quality of consumer reviews. But from the second week, the quality of the eWOM only affects the movie revenue, implying that the review ratings are more important than the number of reviews. Third, our results show that the ratings by professional critics (CRATING) had negative effect to the weekly movie revenue (LNREV). Professional critics often give low ratings to the blockbuster movies that do not have much cinematic quality. Experienced audiences who watch the movie for fun do not trust the professionals' ratings and, hence, tend to go for the low-rated movies by them. In summary, applied to the Korean movie ratings data and employing a simultaneous model, our results are different from the previous eWOM studies: 1) Koreans (or Asians) care about the others' evaluation quality more than quantity, 2) The volume of eWOM is not the cause but the result of the revenue, 3) Professional reviews can give the negative effect to the movie revenue.

  • PDF

Predicting Movie Revenue by Online Review Mining: Using the Opening Week Online Review (영화 흥행성과 예측을 위한 온라인 리뷰 마이닝 연구: 개봉 첫 주 온라인 리뷰를 활용하여)

  • Cho, Seung Yeon;Kim, Hyun-Koo;Kim, Beomsoo;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.113-134
    • /
    • 2014
  • Since a movie is an experience goods, purchase can be decided upon preliminary information and evaluation. There are ongoing researches on what impact online reviews might have on movie revenues. Whereas research in the past was focused on the effect of online reviews. The influence of online reviews appears to be significant in products like a movie because it is difficult to evaluate the feature prior to "consuming" the product. Since an online review is regarded to be objective, consumers find it more trustworthy. Contrary to prior research focused on movie review ratings and volume, we focus moves on movie features related specific reviews. This research proposes a predictive model for movie revenue generation. We decided 15 criteria to classify movie features collected from online reviews through the online review mining and made up feature keyword list each criterion. In addition, we performed data preprocessing and dimensional reduction for data mining through factor analysis. We suggest the movie revenue predictive model is tested using discriminant analysis. Following the discriminant analysis, we found that online review factors can be used to predict movie popularity and revenue stream. We also expect using this predictive model, marketers and strategic decision makers can allocate their resources in more parsimonious fashion.

A Visualization of Movie Review based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seul-gi;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.197-200
    • /
    • 2018
  • The aim of current research is to suggest a interface for movie reviews at a glance through semantic network analysis. The implication of this study is to systematically investigate the structure of eWoM. Specifically, by visualizing semantic networks of movie reviews this study attempts to provide a prototype of a possible review system that can check the response of movie viewer at a glance.

  • PDF

Sentiment Analysis on Movie Reviews Using Word Embedding and CNN (워드 임베딩과 CNN을 사용하여 영화 리뷰에 대한 감성 분석)

  • Ju, Myeonggil;Youn, Seongwook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.

Changes in Review Length Based on the Popularity of Movies Using Big Data (빅데이터를 활용한 영화 흥행에 따른 리뷰길이 변화)

  • Cho, Yonghee;Park, Yiseul;Kim, Hea-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.367-375
    • /
    • 2018
  • The study aims to determine which groups leave longer(more active) online reviews(comments) on the film by separating groups, one that satisfied with the movie while the other group dissatisfied with the movie. The data used were rating scores and reviews(comments) from Naver Movie API, and break-even point data provided by Korea Film Commission. We analyzed the relationship between movie rating and review length, before and after movie opening, the characteristics of review length according to the box office, and whether the movie rating affects the review length.

A Structural Analysis of the Movie Reviews (네티즌의 흥행 영화 리뷰에 포함된 감정 동사 이용 특성 연구)

  • Park, Ji Yeon;Chon, Bum Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.85-94
    • /
    • 2014
  • This study examined the characteristics of movie reviews based on emotional expressions, using the structural analysis. Major results were as follows; firstly, the most cited emotional expression was 'fun'. Fun was the important discriminator for evaluating movies. Secondly, cluster analysis results found that although Korean movies were clustered by many emotional expressions such as fun, immersion and impression, foreign movies were grouped by joust an emotional expression including fun. Internet users tended to divide foreign movie into two kinds of movies such as fun movie and boring movies.