• Title/Summary/Keyword: movie review

Search Result 119, Processing Time 0.01 seconds

Semantic analysis via application of deep learning using Naver movie review data (네이버 영화 리뷰 데이터를 이용한 의미 분석(semantic analysis))

  • Kim, Sojin;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.19-33
    • /
    • 2022
  • With the explosive growth of social media, its abundant text-based data generated by web users has become an important source for data analysis. For example, we often witness online movie reviews from the 'Naver Movie' affecting the general public to decide whether they should watch the movie or not. This study has conducted analysis on the Naver Movie's text-based review data to predict the actual ratings. After examining the distribution of movie ratings, we performed semantics analysis using Korean Natural Language Processing. This research sought to find the best review rating prediction model by comparing machine learning and deep learning models. We also compared various regression and classification models in 2-class and multi-class cases. Lastly we explained the causes of review misclassification related to movie review data characteristics.

Changes in Review Length Based on the Popularity of Movies Using Big Data (빅데이터를 활용한 영화 흥행에 따른 리뷰길이 변화)

  • Cho, Yonghee;Park, Yiseul;Kim, Hea-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.367-375
    • /
    • 2018
  • The study aims to determine which groups leave longer(more active) online reviews(comments) on the film by separating groups, one that satisfied with the movie while the other group dissatisfied with the movie. The data used were rating scores and reviews(comments) from Naver Movie API, and break-even point data provided by Korea Film Commission. We analyzed the relationship between movie rating and review length, before and after movie opening, the characteristics of review length according to the box office, and whether the movie rating affects the review length.

Predicting Movie Revenue by Online Review Mining: Using the Opening Week Online Review (영화 흥행성과 예측을 위한 온라인 리뷰 마이닝 연구: 개봉 첫 주 온라인 리뷰를 활용하여)

  • Cho, Seung Yeon;Kim, Hyun-Koo;Kim, Beomsoo;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.113-134
    • /
    • 2014
  • Since a movie is an experience goods, purchase can be decided upon preliminary information and evaluation. There are ongoing researches on what impact online reviews might have on movie revenues. Whereas research in the past was focused on the effect of online reviews. The influence of online reviews appears to be significant in products like a movie because it is difficult to evaluate the feature prior to "consuming" the product. Since an online review is regarded to be objective, consumers find it more trustworthy. Contrary to prior research focused on movie review ratings and volume, we focus moves on movie features related specific reviews. This research proposes a predictive model for movie revenue generation. We decided 15 criteria to classify movie features collected from online reviews through the online review mining and made up feature keyword list each criterion. In addition, we performed data preprocessing and dimensional reduction for data mining through factor analysis. We suggest the movie revenue predictive model is tested using discriminant analysis. Following the discriminant analysis, we found that online review factors can be used to predict movie popularity and revenue stream. We also expect using this predictive model, marketers and strategic decision makers can allocate their resources in more parsimonious fashion.

A Visualization of Movie Review based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seul-gi;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.197-200
    • /
    • 2018
  • The aim of current research is to suggest a interface for movie reviews at a glance through semantic network analysis. The implication of this study is to systematically investigate the structure of eWoM. Specifically, by visualizing semantic networks of movie reviews this study attempts to provide a prototype of a possible review system that can check the response of movie viewer at a glance.

  • PDF

Sentiment Analysis on Movie Reviews Using Word Embedding and CNN (워드 임베딩과 CNN을 사용하여 영화 리뷰에 대한 감성 분석)

  • Ju, Myeonggil;Youn, Seongwook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.

Visualization of movie recommendation system using the sentimental vocabulary distribution map

  • Ha, Hyoji;Han, Hyunwoo;Mun, Seongmin;Bae, Sungyun;Lee, Jihye;Lee, Kyungwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.19-29
    • /
    • 2016
  • This paper suggests a method to refine a massive collective intelligence data, and visualize with multilevel sentiment network, in order to understand information in an intuitive and semantic way. For this study, we first calculated a frequency of sentiment words from each movie review. Second, we designed a Heatmap visualization to effectively discover the main emotions on each online movie review. Third, we formed a Sentiment-Movie Network combining the MDS Map and Social Network in order to fix the movie network topology, while creating a network graph to enable the clustering of similar nodes. Finally, we evaluated our progress to verify if it is actually helpful to improve user cognition for multilevel analysis experience compared to the existing network system, thus concluded that our method provides improved user experience in terms of cognition, being appropriate as an alternative method for semantic understanding.

Sentiment Analysis of movie review for predicting movie rating (영화리뷰 감성 분석을 통한 평점 예측 연구)

  • Jo, Jung-Tae;Choi, Sang-Hyun
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.161-177
    • /
    • 2015
  • Currently, the influence of the Internet portal sites that can make it quick and easy to contact the vast amount of information is increasing. Users can connect the Internet through a portal to obtain information, such as communication between Internet users, which can be used to meet a variety of purposes. People are exposed to a variety of information from other users in the search for a movie and get information. The impact on the reviews and ratings with the limited number of characters of the film allows users to form a relationship to the movie, decide whether you want to see the movie or find another movie. but, the user can not read the whole movie review. When user see the overall evaluation, the user can receive the correct information. This research conducted a study on the prediction of the rating by the use of review data. Information of reviews, is divided into two main areas: the"fact" and "opinion". "Fact" is to convey the dispassionate information and "Opinion" is, to represent the user's feelings. In this study, we built sentiment dictionary based on the assessment and evaluation of the online review and applied to evaluate other movies. In the comparative study with a simple emotion evaluation technique, we found the suggested algorithm got the more accurate results.

  • PDF

Movie Review Classification Based on a Multiple Classifier

  • Tsutsumi, Kimitaka;Shimada, Kazutaka;Endo, Tsutomu
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.481-488
    • /
    • 2007
  • In this paper, we propose a method to classify movie review documents into positive or negative opinions. There are several approaches to classify documents. The previous studies, however, used only a single classifier for the classification task. We describe a multiple classifier for the review document classification task. The method consists of three classifiers based on SVMs, ME and score calculation. We apply two voting methods and SVMs to the integration process of single classifiers. The integrated methods improved the accuracy as compared with the three single classifiers. The experimental results show the effectiveness of our method.

  • PDF

The Impact of Initial eWOM Growth on the Sales in Movie Distribution

  • Oh, Yun-Kyung
    • Journal of Distribution Science
    • /
    • v.15 no.9
    • /
    • pp.85-93
    • /
    • 2017
  • Purpose - The volume and valence of online word-of-mouth(eWOM) have become an important part of the retailer's market success for a wide range of products. This study aims to investigate how the growth of eWOM has generated the product's final financial outcomes in the introductory period influences. Research design, data, and methodology - This study uses weekly box office performance for 117 movies released in the South Korea from July 2015 to June 2016 using Korean Film Council(KOFIC) database. 292,371 posted online review messages were collected from NAVER movie review bulletin board. Using regression analysis, we test whether eWOM incurred during the opening week is valuable to explain the last of box office performance. Three major eWOM metrics were considered after controlling for the major distributional factors. Results - Results support that major eWOM variables play a significant role in box-office outcome prediction. Especially, the growth rate of the positive eWOM volume has a significant effect on the growth potential in sales. Conclusions - The findings highlight that the speed of eWOM growth has an informational value to understand the market reaction to a new product beyond valence and volume. Movie distributors need to take positive online eWOM growth into account to make optimal screen allocation decisions after release.

A Visualization of Movie Reviews based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seulgi;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • This study visualized users reaction about movies based on keywords with high frequency. For this work, we collected data of movie reviews on . A total of six movies were selected, and we conducted the work of data gathering and preprocessing. Semantic network analysis was used to understand the relationship among keywords. Also, NetDraw, packaged with UCINET, was used for data visualization. In this study, we identified the differences in characteristics of review contents regarding each movie. The implication of this study is that we visualized movie reviews made by sentence as keywords and explored whether it is possible to construct the interface to check users' reaction at a glance. We suggest that further studies use more diverse movie reviews, and the number of reviews for each movie is used in similar quantities for research.