• Title/Summary/Keyword: movement control

Search Result 2,676, Processing Time 0.033 seconds

Zigzag Gait Planning of n Quadruped Walking Robot Using Geometric Search Method (기하학적 탐색을 이용한 4각 보행로봇의 지그재그 걸음새 계획)

  • Park, Se-Hoon;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • This paper presents a systematic method of the zigzag gait planning for quadruped walking robots. When a robot walks with a zigzag gait, its body is allowed to move from side to side, while the body movement is restricted along a moving direction in conventional continuous gaits. The zigzag movement of the body is effective to improve the gait stability margin. To plan a zigzag gait in a systematic way, the relationship between the center of gravity(COG) and the stability margin is firstly investigated. Then, new geometrical method is introduced to plan a sequence of the body movement which guarantees a maximum stability margin as well as monotonicity along a moving direction. Finally, an optimal swing-leg sequence is chosen for a given arbitrary configuration of the robot. To verify the proposed method, computer simulations have been performed for both cases of a periodic gait and a non-periodic gait.

Real-time 3-Dimensional Measurement of Lumbar Spine Range of Motion using a Wireless Sensor (무선 센서를 활용한 요추 가동 범위의 실시간 3차원 측정)

  • Jeong, Woo-Hyuk;Jee, Hae-Mi;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.713-718
    • /
    • 2012
  • Lumber spine range of motion has been used to measure of physical and functional impairment by various tools from a ruler to 3D kinematic devices. However, pre-existing tools have problems in either movement or accuracy and reliability limitations. Accurate devices are limited by fixed space whereas simple devices are limited in measuring complex movements with less accuracy. In order to solve the location, movement and accuracy limitations at once, we have developed a novice measurement device equipped with accelerometer sensor and gyroscope sensor for getting three-dimensional information of motion. Furthermore, Kalman filter was applied to the algorithm to improve accuracy. In addition, RF wireless communication was added for the user to conveniently check measured data in real time. Finally, the measurement method was improved by considering the movement by a reference point. An experiment was conducted to test the accuracy and reliability of the device by conducting a test-retest reliability test. Further modification will be conducted to used the device in various joints range of motion in clinical settings in the future.

Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot (이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가)

  • Park, Jae-Hong;Bhan, Wook;Choi, Tae-Young;Kwon, Hyun-Il;Cho, Dong-Il;Kim, Kwang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

DRIVER STEERING MODEL AND IMPROVEMENT TECHNIQUE OF VEHICLE MOVEMENT PERFORMANCE DURING DRIFT RUNNING

  • Nozaki, H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.449-457
    • /
    • 2006
  • The driver model during drift cornering was examined, and a technique to improve vehicle movement performance during drift cornering was investigated. Based on the results obtained, the driver was found to steer using feedback of the body slip angle and the body slip angle velocity during drift cornering. Moreover, improvement of the cornering force characteristic, at which exceeded the maximum cornering force calm as much as possible is important.

Coordination of Two Manipulators Using Force Torque Sensor (Painting on the Three-Dimensional Surface)

  • Nakajima, Haruo;Ishida, Hirofumi;Ishimatsu, Takakazu;Kasagami, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.597-600
    • /
    • 1994
  • A Robot system to realize a painting using a writing brush is explained here. Based on the three-dimensional data about the target china, the movements of the writing brush is determined. The movement is realized by the movement of two robot manipulators which move coordinatedly. Experimental results reveals the applicability of one system.

  • PDF

From Total Quality Control to Quality Management in Korea (QM 은 TQC의 연속선상에 있는가?)

  • Chung, Kyu-Suk
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.1-15
    • /
    • 1994
  • Korean QM movement is initiated by Government from 1992 as a new industrial promotion policy instead of past Japanese style TQC movement. There has been much confusions among Korean QM, TQC, and western quality management or TQM. This paper presents the domain and the characteristics of QM to distinguish it from past TQC propulsion.

  • PDF

Design and Development of Shaker for Acceleration test of Gimbal (김발의 가속도 시험용 Shaker의 설계 및 개발)

  • Yoon, Jae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.147-153
    • /
    • 2001
  • This paper proposes a shaker system design for acceleration test of gimbal. Main reason of shaker system design is to give acceleration to the gimbal, which is moving and tracking the target on the tracking test equipment. The shaker system is mounted on the tracking test equipment. It uses the scotch yoke mechanism to have the constant movement in return. The Scotch yoke mechanism changes the rotational movement of constant velocity to simple harmonic motion.

  • PDF

A Study on Mandibular Rotational Torque Movement in Subjects with Temporomandibular Joint Sounds (악관절음 환자의 하악 비틀림회전운동에 관한 연구)

  • So, Jong-Seob;Lee, Kyoung-Ho;Chung, Sung-Chang
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.4
    • /
    • pp.455-466
    • /
    • 1999
  • The purpose of this study was to investigate the magnitude of mandibular rotational torque movements in subjects with TMJ sounds, and to analyse correlation between quantitative characteristics of TMJ sounds and mandibular rotational torque movement. Twenty dental college students with TMJ clicking and twenty students without any TMD signs and symptoms were examined by mean of SonoPak and Rotate program of BioPAK system(Bioresearch Inc. MilWaukee, wisconsin, USA) in this study. Mandibular rotational torque movements were recorded and analysed during maximum mouth opening, protrusion, and lateral excursion in frontal and horizontal planes. The obtained results were as follows: 1. On maximum mouth opening, mandibular rotational angle and distance of clicking group were significantly greater than those of control group in frontal plane. (P<0.05). 2. During maximum mouth opening closing, maximum mandibular rotational angle and distance of clicking group were significantly greater than those of control group in frontal plane. (P<0.01). 3. On protrusion, mandibular rotational angle and distance of clickin group were significantly greater than those of control group in horizontal plane. (P<0.05). 4. On lateral excursion, there was no significant difference in mandibular rotational angle and distance between clicking group and control group in frontal and horizontal planes. 5. There were significant correlations between peak amplitude of TMJ sounds and maximum mandibular rotational distance during maximum mouth opening (r=-.481) and mandibular rotational distance on maximum mouth opening (r=-.455) in horizontal plane. 6. There were significant correlations between Above 300/(0-300)Hz ratio of TMJ sounds and mandibular rotational angle (r=-.499) and distance (r=-.457) on maximum mouth opening in frontal plane.

  • PDF

IMMUNOHISTOCHEMICAL STUDY ON THE PERIODONTAL TISSUE REACTION DURING EXPERIMENTAL TOOTH MOVEMENT IN THE ADULT DOG (실험적 치아 이동시 성견 치주조직의 변화에 대한 면역조직화학적 연구)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.23 no.1 s.40
    • /
    • pp.89-100
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of orthodontic force on periodontal cellular activity by immunoperoxidase stain of epidermal growth factor, one of the tissue hormone. And supplementarily, to investigate of the changes of periodontal structures, periodontium was stained by H-E, Masson's Trichrome, P. A. S. stain after orthodontic force application. The experimental animals were four young adult dogs of average 8 month old. The fixed orthodontic appliance was cemented on mandibular right 4th premolar and 1st molar of each animal as experimental site. Mandibular left 4th premolar area of the same animal was used as control. The appliance consist of two silver crown soldered with 0.030' tube, $0.018\times0.022'$ S.S. sectional arch wire, and 0.009' open coil spring for manifestating of orthodontic force for bodily tooth movement of mandibular 4th premolar toward mesial direction. Experimental group was sacrificed at 1, 2, 3, 5 weeks from beginning of the experiment, and was investigated immunohistochemically and bistochemically by several staining methods. Findings were as follows: 1. The degree of EGF staining in control group was highest in epithelium of periodontium, and osteoclasts, osteoblasts and fibroblasts around the capillary were stained at higher level in periodontium. Generally, control group shows positive distribution of EGF all around the periodontal area. 2. The degree of EGF staining in control and 5 week group were similar, and did not show the significant different level between tension and pressure side. 3. All of 1, 2, 3 week group showed the same staining degree and distribution of EGF, and the tension side was more positive reaction of EGF stain than the pressure side. 4. The features of collagen fiber and periodontal fiber arrangement observed by H-E, Masson's Trichrome and P. A. S. stain revealed that oblique periodontal fibers were strectched in tension side, compressed in pressure side of all experimental group. Some fiber group in pressure side of 5 week group recovered the regular arrangement along the capillaries.

  • PDF

A Study on Robot Arm Control System using Detection of Foot Movement (발 움직임 검출을 통한 로봇 팔 제어에 관한 연구)

  • Ji, H.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • The system for controlling the robotic arm through the foot motion detection was implemented for the disabled who not free to use of the arm. In order to get an image on foot movement, two cameras were setup in front of both foot. After defining multiple regions of interest by using LabView-based Vision Assistant from acquired images, we could detect foot movement based on left/right and up/down edge detection within the left/right image area. After transferring control data which was obtained according to left/right and up/down edge detection numbers from two foot images of left/right sides through serial communication, control system was implemented to control 6-joint robotic arm into up/down and left/right direction by foot. As a result of experiment, we was able to get within 0.5 second reaction time and operational recognition rate of more 88%.

  • PDF