• Title/Summary/Keyword: mouse macrophage

Search Result 565, Processing Time 0.031 seconds

Ginsenosides from Korean Red Ginseng ameliorate lung inflammatory responses: inhibition of the MAPKs/NF-κB/c-Fos pathways

  • Lee, Ju Hee;Min, Dong Suk;Lee, Chan Woo;Song, Kwang Ho;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.476-484
    • /
    • 2018
  • Background: Korean Red Ginseng (steamed and dried white ginseng, Panax ginseng Meyer) is well known for enhancing vital energy and immune capacity and for inhibiting cancer cell growth. Some clinical studies also demonstrated a therapeutic potential of ginseng extract for treating lung inflammatory disorders. This study was conducted to establish the therapeutic potential of ginseng saponins on the lung inflammatory response. Methods: From Korean Red Ginseng, 11 ginsenosides (Rb1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and Rh2) were isolated. Their inhibitory potential and action mechanism were evaluated using a mouse model of lung inflammation, acute lung injury induced by intranasal lipopolysaccharide administration. Their anti-inflammatory activities were also examined in lung epithelial cell line (A549) and alveolar macrophage (MH-S). Results: All ginsenosides orally administered at 20 mg/kg showed 11.5-51.6% reduction of total cell numbers in bronchoalveolar lavage fluid (BALF). Among the ginsenosides, Rc, Re, Rg1, and Rh2 exhibited significant inhibitory action by reducing total cell numbers in the BALF by 34.1-51.6% (n = 5). Particularly, Re showed strong and comparable inhibitory potency with that of dexamethasone, as judged by the number of infiltrated cells and histological observations. Re treatment clearly inhibited the activation of mitogen-activated protein kinases, nuclear factor-${\kappa}B$, and the c-Fos component in the lung tissue (n = 3). Conclusion: Certain ginsenosides inhibit lung inflammatory responses by interrupting these signaling molecules and they are potential therapeutics for inflammatory lung diseases.

Expression Profiling of Lipopolysaccharide Target Genes in RAW264.7 Cells by Oligonucleotide Microarray Analyses

  • Huang, Hao;Park, Cheol-Kyu;Ryu, Ji-Yoon;Chang, Eun-Ju;Lee, Young-Kyun;Kang, Sam-Sik;Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.890-897
    • /
    • 2006
  • In inflammatory responses, induction of cytokines and other immune regulator genes in macrophages by pathogen-associated signal such as lipopolysaccharide (LPS) plays a crucial role. In this study, the gene expression profile changes by LPS treatment in the macrophage/monocyte lineage cell line RAW264.7 was investigated. A 60-mer oligonucleotide microarray of which probes target 32381 mouse genes was used. A reverse transcription-in vitro translation labeling protocol and a chemileuminescence detection system were employed. The mRNA expression levels in RAW264.7 cells treated for 6 h with LPS and the control vehicle were compared. 747 genes were up-regulated and 523 genes were down-regulated by more than 2 folds. 320 genes showing more than 4-fold change by LPS treatment were further classified for the biological process, molecular function, and signaling pathway. The biological process categories that showed high number of increased genes include the immunity and defense, the nucleic acid metabolism, the protein metabolism and modification, and the signal transduction process. The chemokine-cytokine signaling, interleukin signaling, Toll receptor signaling, and apoptosis signaling pathways involved high number of genes differentially expressed in response to LPS. These expression profile data provide more comprehensive information on LPS-target genes in RAW264.7 cells, which will be useful in comparing gene expression changes induced by extracts and compounds from anti-inflammatory medicinal herbs.

The Effect of Achyranthis Bidentatae Radix(ABR) on Dental caries and Periodental digease (우슬(牛膝)이 치아(齒牙) 및 치주질환(齒周疾患)에 미치는 영향(影響))

  • Im, Seok-in
    • Journal of Haehwa Medicine
    • /
    • v.7 no.1
    • /
    • pp.939-955
    • /
    • 1998
  • Achyranthis Bidentatae Radix(ABR) is important prescriptions that have been used in oriental medicine for stomatitis and wound healing. The study was done to evaluate the inhibitory effects of cytotoxicity, formation of superoxide on the macrophage and neutrophil, prostaglandins($PGE_2$), interleukins($IL-1{\beta}$), collagenase activity and synthesis of collagen and DNA. The results were obtained as follows: 1. ABR was not showed the proliferation difference of human fibroblast and monocyte in 0.01% and 0.001% concentrations to be experimented and in result, it was concluded that they have no cytotoxicity but showed cytotoxicity in 0.1% concentrations. 2. ABR inhibited the formation of superoxide to 48% at the concentration of 0.001% in the mouse monocyte. 3. ABR inhibited the formation of superoxide to 40% at 0.001%, 58% at 0.0001% as compared with control in the human monocyte. 4. ABR inhibited the formation of superoxide to 58% at 0.0001%, 40% at 0.001% in the human neutrophil. 5. ABR was not showed the proliferation difference of human monocyte in all concentrations to be experimented and in result, it was concluded that they inhibited the formation of prostaglandins($PGE_2$) in the human monocyte stimulated with E. coli. 6. ABR showed the all concentration of inhibiting the production of inter1eukins($IL-1{\beta}$) in the human monocyte stimulated with E. coli. 7. ABR didn't influence on collagen synthesis and total protein in fibroblasts. 8. ABR inhibited the collagenase activity to 84% at 0.1%, 69% at 0.2%, 76% at 0.5%, 91% at 0.001% respectively.

  • PDF

Experimental study on the Anti-inflammatory and wound healing effect of Ulmus parvifolia (유백피(楡白皮)가 항염작용(抗炎作用)에 미치는 영향(影響))

  • No, Seok-seon
    • Journal of Haehwa Medicine
    • /
    • v.7 no.1
    • /
    • pp.837-852
    • /
    • 1998
  • Ulmus parvifolia(UP) is important prescriptions that have been used in oriental medicine for stomatitis and wound healing. The study was done to evaluate the inhibitory effects of cytotoxicity, formation of superoxide on the macrophage and neutrophil, prostaglandins($PGE_2$), interleukins($IL-1{\beta}$), collagenase activity and synthesis of collagen and DNA. The results were obtained as follows: 1. UP was not showed the proliferation difference of human fibroblast and monocyte in all concentrations to be experimented and in result, it was concluded that they have no cytotoxicity. 2. UP inhibited the formation of superoxide to 22% at 0.01%, 52% at 0.001% in the mouse monocyte. 3. UP inhibited the formation of superoxide to 6% at the concentration of 0.001% as compared with control in the human monocyte. 4. UP was not showed the proliferation difference of human neutrophil in all concentrations to be experimented and in result, it was concluded that they inhibited the formation of superoxide. 5. UP was not showed the proliferation difference of human monocyte in all concentrations to be experimented and in result, it was concluded that they inhibited the formation of prostaglandins($PGE_2$) in the human monocyte stimulated with E. coli. 6. UP was showed the all concentration of inhibiting the production of interleukins($IL-1{\beta}$) to slight in the human monocyte stimulated with E. coli. 7. UP influence on collagen synthesis and total protein in fibroblasts to at the slight of 0.05%, specially to excellent to 0.2%. 8. UP inhibited the collagenase activity to 20% at 0.1%, 31% at 0.2%, 45% at 0.5%, 24% at 0.01% respectively.

  • PDF

EFFECTS OF CYTOKINES ON THE CELL PROLIFERATION OF CYTOLYTIC T CELL LINE CTLL - 2 (Cytolytic T cell line CTLL - 2의 세포증식에 미치는 cytokine의 효과)

  • Seo, Yang-Ja;Lee, In-Kyu;Lee, Jin-Young;Oh, Kwi-Ok;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.3
    • /
    • pp.454-460
    • /
    • 1993
  • Abnormalities of the T cell subsets have been detected in the immunologically mediated disease sites such as periodontal lesions which are attributable to the regulatory effect of cell differentiation and specific chemokinetic effect of various cytokines. Macrophage Inflammatory protein$(MIP)-1{\alpha}$ and gammain terferon$({\gamma}-IFN)$ serve as important immunoregulatory molecules through which growth and differentiation of specific T cell subsets are known to be negatively regulated. Murine cytolytic T cell line CTLL-2 were used to perform the [$^3H$]-thymidine incorporation test, by which we obtained more comprehensive view in regulatory actions of cytokines on the T cell subset proliferation. 1. $rMIP-{\alpha}$(200ng/ml) and $r{\gamma}-IFN$(100U/ml) appreared to suppress the proliferation rate to CTLL-2 by 74 and 86% respectively, and the suppressive action of two cytokines were synergisic. 2. Culture supernatant of anti-CD3 mAb-stimulated mouse splenocyte enhanced the proliferation rate of CTLL-2 up to 10-fold with dose-dependent manner. However, culture supernatant of unstimulated splenocyte showed only 2-fold increase in the proliferation rate. 3. CTLL-2 cell proliferation was strictly IL-2 dependent.

  • PDF

Effects of Artemisia princeps Extract on Bone Metabolism (애엽 추출물이 골 대사에 미치는 영향)

  • Lee, Seung-Min;Kim, Myung-Gyou;Lee, Seung-Youn;Kang, Tae-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.363-368
    • /
    • 2010
  • Artemisia princeps has been utilized as a traditional medicine for a variety of diseases in Korea. In this study, we investigated the effects of Artemisia princeps extract (APE) on bone metabolism both in vitro using primary mouse bone marrow-derived macrophage and in vivo using ovariectomized rats. APE decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP activity. Also, APE inhibited bone resorptive activity of differentiated osteoclasts. In ovariectomized rats, APE alleviated the decrease in the trabecular bone mineral density. These results showed that APE might be useful for the prevention of postmenopausal bone loss.

Differential Induction of Septic Shock by Lipopolysacchrides from E. coli and S. abortus (S. abortus 유래 LPS와 E. coli 유래 LPS에 의한 패혈증성 쇽 유도 작용 비교)

  • Cho, Jae-Youl;Yoo, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.44-50
    • /
    • 2007
  • Acute septic shock is one of inflammatory diseases mediated by pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$. In this study, we examined the pathological difference and mechanism of lipopolysaccharides isolated from E. coli (E-LPS) or S. abortus (S-LPS) on inducing acute septic shock in ICR mouse. All mice were died by intraperitoneal treatment of S-LPS with 0.75 mg/kg, whereas E-LPS treated with even 3 mg/kg only showed 30% of mice lethal, indicating that S-LPS may be more feasible in triggering a strong septic shock condition. The secretion pattern of TNF-${\alpha}$, a critical pro-inflammatory cytokine in septic shock condition, was also distinct between E-LPS- and S-LPS-treated groups. Thus, S-LPS strikingly increased serum level of TNF-${\alpha}$ (6 ng/ml) at 1 h, while E-LPS just displayed at 2 ng/ml level. However the interaction of S-LPS with LPS receptor toll like receptor (TLR)-4, was not stronger than that of E-LPS, according to experiments with macrophage cell line RAW264.7 cells. Thus, E-LPS rather than S-LPS strongly enhanced the production of TNF-${\alpha}$. Interestingly, S-LPS more strongly up-regulated splenocyte proliferation, compared to E-LPS group, whereas there was no difference between S- or E-LPS treated groups in proliferation of Balb/c- or C57BL/6-originated splenic lymphocytes. Therefore, our data suggest that S-LPS is a more active endotoxin and that the strong septic shock-inducing effect of S-LPS seems due to the enhancement of early TNF-${\alpha}$ production and S-LPS-sensitive lymphocyte proliferation.

Effects of Cordyceps militaris on Immune Activity (밀리타리스 동충하초(Cordyceps militaris)의 면역 활성에 미치는 영향)

  • Kang, In Soon;Kim, Hyeju;Lee, Tae Ho;Kwon, Yong Sam;Son, Miwon;Kim, Chaekyun
    • YAKHAK HOEJI
    • /
    • v.58 no.2
    • /
    • pp.81-90
    • /
    • 2014
  • In order to determine the functional benefits of Cordyceps militaris in the immune system, we examined the immunomodulatory activities of C. militaris using an immunocompromised C57BL/6 mice, mouse spleen cells, RAW 264.7 macrophage cells, and A549 lung carcinoma cells. Mice were injected intraperitioneally with an immunosuppressive drug, cyclophosphamide, and then administered orally with 30, 100 and 300 mg/kg of 50% ethanol extract of C. militaris (CME 30, CME 100 and CME 300) for 14 days. CME increased splenocyte proliferation and natural killer (NK) cell activity compared to 3% hydroxypropyl methylcellulose-treated control mice. CME also increased the production of Th1 cytokines, IL-2 and TNF-${\alpha}$ in spleen cells isolated from CME-injected mice and in vitro, which suggested the enhanced cellular immunity in response to CME. CME also increased splenocyte proliferation, NK cell activity, and IL-2 and TNF-${\alpha}$ production compared to 1 ${\mu}M$ methotrexate-treated spleen cells in vitro. We examined whether C. militaris regulates the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. CME inhibited LPS-induced NO production and iNOS expression in a dose dependent manner, while COX-2 expression was remained unchanged. In addition, CME also has free radical scavenging activity, indicating its antioxidant activity. These results indicate that C. militaris enhances immune activity by promoting immune cell proliferation and cytokine production.

Anti-inflammatory effect of methanol extract of Keum-Ryung-Ja-San in mouse macrophages (마우스대식세포주인 RAW 264.7에서 금령자산(金鈴子散)(金鈴子散)의 항염증 활성 연구)

  • Kim, Do-Hyung;Yi, Hyo-Seung;Yun, Hyun-Jeong;Cha, Chang-Min;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.89-98
    • /
    • 2010
  • Objective : The aim of this study was to determine whether methanol extract of Keum-Ryung-Ja-San (KRJS) inhibit production of NO, $PGE_2$, iNOS, COX-2 and pro-inflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Methods : Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines and PGE2 were measured by ELISA kit. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2(COX-2), $I{\kappa}-B-\alpha$ and nuclear NF-${\kappa}B$ p65 expression were detected by western blot. Results : Our results indicated that methanol extract of KRJS significantly inhibited the LPS-induced NO, $PGE_2$ production and iNOS, COX-2 expression accompanied by an attenuation of TNF-$\alpha$, IL-$1{\beta}$ and IL-6 production in RAW 264.7 cells. Moreover, methanol extract of KRJS treatment also blocked LPS-induced NF-${\kappa}B$ activation. Conclusion : These findings indicate that methanol extract of KRJS inhibits the production of pro-inflammatory mediators and cytokines via suppression of NF-${\kappa}B$ activation. Take together, these results indicate that methanol extract of KRJS has the potential for use as an agent of anti-chronic inflammatory diseases.

Anti-oxidant and anti-inflammatory effect of Allium Hookeri water extracts in RAW 264.7 cells (삼채(三菜) 물추출물이 RAW 264.7 세포의 항산화 및 염증반응에 미치는 영향)

  • Lee, Sangsoo;Han, Hyosang;Yoo, Jayeon;Nam, Myung Soo;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.35 no.4
    • /
    • pp.37-43
    • /
    • 2020
  • Objectives : Allium hookeri is a well-known traditional herbal remedy and its root used for treatment of inflammation and tumor. However, the mechanism of anti-inflammatory effect of Allium hookeri is still unknown. This study aims to examine the mechanism of anti-inflammatory effect of Allium hookeri on mouse macrophage cell line, RAW 264.7 cells. Methods : Anti-oxidant effect of water extract of Allium hookeri (WEAH) was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay. 3- (4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed to determine the effect of WEAH on cell viability in RAW 264.7 cells. In addition, anti-inflammatory effect of WEAH was investigated in RAW 264.7 cells. Inflammation of RAW 264.7 cells induced by lipopolysarccharide (LPS) treatment and expression levels of inflammatory cytokine interleukin 1 β (IL-1β) and interleukin 6 (IL-6) gene were analyzed using quantitative reverse transcription PCR (qRT-PCR) analysis. Furthermore, the phosphorylation of inhibitor of nuclear factor kappa B (IκBα) after LPS treatment with WEAH-treated RAW 264.7 cells was confirmed by immunoblot analysis. Results : WEAH showed a strong anti-oxidant effect and no cytotoxicity to RAW 264.7 cells up to 2 mg/㎖ concentration. The LPS-induced mRNA expression levels of IL-1β and IL-6 were decreased by WEAH treatment. Furthermore, the LPS-induced phosphorylation of IκBα is attenuated by WEAH treatment. Conclusions : Through experimental demonstration of anti-oxidant and anti-inflammatory effects of WEAH, we suggest that Allium hookeri is a valuable material for prevention and treatment of various inflammatory diseases.