Effects of Cordyceps militaris on Immune Activity

밀리타리스 동충하초(Cordyceps militaris)의 면역 활성에 미치는 영향

  • Kang, In Soon (Department of Pharmacology and Toxicology, Inha University School of Medicine) ;
  • Kim, Hyeju (Research Institute, Dong-A ST Co., Ltd.) ;
  • Lee, Tae Ho (Research Institute, Dong-A ST Co., Ltd.) ;
  • Kwon, Yong Sam (Research Institute, Dong-A ST Co., Ltd.) ;
  • Son, Miwon (Research Institute, Dong-A ST Co., Ltd.) ;
  • Kim, Chaekyun (Department of Pharmacology and Toxicology, Inha University School of Medicine)
  • Received : 2014.02.12
  • Accepted : 2014.03.24
  • Published : 2014.04.30

Abstract

In order to determine the functional benefits of Cordyceps militaris in the immune system, we examined the immunomodulatory activities of C. militaris using an immunocompromised C57BL/6 mice, mouse spleen cells, RAW 264.7 macrophage cells, and A549 lung carcinoma cells. Mice were injected intraperitioneally with an immunosuppressive drug, cyclophosphamide, and then administered orally with 30, 100 and 300 mg/kg of 50% ethanol extract of C. militaris (CME 30, CME 100 and CME 300) for 14 days. CME increased splenocyte proliferation and natural killer (NK) cell activity compared to 3% hydroxypropyl methylcellulose-treated control mice. CME also increased the production of Th1 cytokines, IL-2 and TNF-${\alpha}$ in spleen cells isolated from CME-injected mice and in vitro, which suggested the enhanced cellular immunity in response to CME. CME also increased splenocyte proliferation, NK cell activity, and IL-2 and TNF-${\alpha}$ production compared to 1 ${\mu}M$ methotrexate-treated spleen cells in vitro. We examined whether C. militaris regulates the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. CME inhibited LPS-induced NO production and iNOS expression in a dose dependent manner, while COX-2 expression was remained unchanged. In addition, CME also has free radical scavenging activity, indicating its antioxidant activity. These results indicate that C. militaris enhances immune activity by promoting immune cell proliferation and cytokine production.

Keywords

References

  1. Sung, G. H., Hywel-Jones, N. L., Sung, J. M., Luangsa-Ard, J. J., Shrestha, B. and Spatafora, J. W. : Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5 (2007). https://doi.org/10.3114/sim.2007.57.01
  2. 성한수 : 한국의 동충하초, 교학사, 서울 p. 13 (1996).
  3. Jang, Y. S. and Hong, S. W. : Notes on unrecorded fresh fungi of Cordyceps in Korea. Kor. J. Mycol. 14, 85 (1986).
  4. Sung, J. M., Kim, C. H., Yang, K. J., Lee, H. K. and Kim, Y. S. : Studies on distribution and utilization of Cordyceps militaris and C. nutans. Kor. J. Mycol. 21, 94 (1993).
  5. Sung, J. M., Lee, H. K., Yoo, Y. J., Choi, Y. S., Kim, S. H., Kim, Y. U. and Sung, K. H. : Classification of Cordyceps species based on protein banding pattern. Kor. J. Mycol. 26, 1 (1998).
  6. Kobayasi, Y. : The genus cordyceps and its allies. Sci. Ret. Tokyo Bunrika Daigaku Sect. B5, 53 (1941).
  7. Basith, M. and Madelin, M. F. : Studies on the production of perithecial stromata by Cordyceps militaris in artificial culture. Can. J. Bot. 46, 473 (1968). https://doi.org/10.1139/b68-071
  8. Sung, H. M., Choi, Y. S., Lee, H. K., Kim, S. H., Kim, Y. O. and Sung, G. H. : Production of fruiting body using cultures of entomopathogenic fungal species. Kor. J. Mycol. 27, 15 (1999).
  9. Kim, H. W., Kim, Y. H., Fu, C. X., Nam, K. S., Lee, S, J., An, H. S., Jeong, E. H., Yun, S. H., Sung, S. K., Lee, S., J. and Hyun, J. W. : In vitro antitumor activity of ergosterol peroxide isolate from Cordyceps militaris on cancer cell lines from Korean patients. Kor. J. Mycol. 29, 61 (2001).
  10. Cory, J. G., Suhadolnik, R. J., Resnick, B. and Rich, M. A. : Incorporation of cordycepin(3'-deoxyadenosine) into ribonucleic acid of human tumor cells. Biochim. Biophys. Acta 103, 646 (1965). https://doi.org/10.1016/0005-2787(65)90085-7
  11. Song, C. H., Jeon, Y. J., Yang, B. K., Ra, K. S. and Sung, J. M. : Anticomplementary activity of exo-polymers produced from submerged mycelial cultures of higher fungi with particular reference to Cordycepes militaris. J. Microb. Biotechnol. 8, 536 (1998).
  12. Shim, J. Y., Lee, Y. S., Lim, S. S., Shin, K. H., Hyun, J. E., Kim, S. Y. and Lee, E. B. : Pharmacological activities of Paecilomyes japonica a new type cordyceps sp. Kor. J. Pharmacogn. 31, 163 (2000).
  13. Buenz, E. J., Bauer, B. A., Osmundson, T. W. and Motley, T. J. : The traditional Chinese medicine Cordyceps sinensis and its effects on apoptotic homeostasis. J. Ethnopharmacol. 96, 19 (2005). https://doi.org/10.1016/j.jep.2004.09.029
  14. Mizuno, T. : Medicinal effects and utilization of Cordyceps (Fr.) link (ascomycetes) and Isaria Fr. (mitosporic fungi) Chinese caterpillar fungi, "Tochukaso". Intl. J. Med. Mushroom 1, 251 (1999). https://doi.org/10.1615/IntJMedMushrooms.v1.i3.80
  15. Ng, T. B. and Wang, H. X. : Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509 (2005). https://doi.org/10.1211/jpp.57.12.0001
  16. Jin, C. Y., Kim, G. Y. and Choi, Y. H. : Induction of apoptosis by aqueous extract of cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDAMB- 231 cells. J. Microbiol. Biotechnol. 18, 1997 (2008).
  17. Jeong, J. W., Jin, C. Y., Park, C., Han, M. H., Kim, K. Y., Moon, S. K., Kim, C. G., Jeong, Y. K., Kim, W. J., Lee, J. D. and Choi, Y. H. : Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int. J. Oncol. 40, 1697 (2012).
  18. Lee, H. M., Lee, Y. J. and Park, T. S. : Tumor growth inhibitory and immunomodulatory activity of Cordyceps militaris water extracts in ICR mice bearing sarcoma-180 solid tumor. J. Kor. Soc. Food Sci. Nutr. 33, 59 (2004). https://doi.org/10.3746/jkfn.2004.33.1.059
  19. Ohata, Y., Lee, J. B., Hayashi, K., Fujita, A., Park, D. K. and Hayashi, Y. : In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans. J. Agric. Food Chem. 55, 10194 (2007). https://doi.org/10.1021/jf0721287
  20. Shin, S., Kwon, J., Lee, S., Kong, H., Lee, S., Lee, C. K., Cho, K., Ha, N. J. and Kim, K. : Immunostimulatory effects of Cordyceps militaris on macrophages through the enhanced production of cytokines via the activation of NF-${\kappa}B$. Immune Netw. 10, 55 (2010). https://doi.org/10.4110/in.2010.10.2.55
  21. Kim, C. S., Lee, S. Y., Cho, S. H., Ko, Y. M., Kim, B. H., Kim, H. J., Park, J. C., Kim, D. K., Ahn, H., Kim, B. O., Lim, S. H., Chun, H. S. and Kim, D. K. : Cordyceps militaris induces the IL-18 expression via its promoter activation for IFN-$\gamma$ production. J. Ethnopharmacol. 120, 366 (2008). https://doi.org/10.1016/j.jep.2008.09.010
  22. Yu, R., Song, L., Zhao, Y., Bin, W., Wang, L., Zhang, H., Wu, Y., Ye, W. and Yao, X. : Isolation and biological properties of polysaccharide CPS-1 from cultured Cordyceps militaris. Fitoterapia 75, 465 (2004). https://doi.org/10.1016/j.fitote.2004.04.003
  23. Won, S. Y. and Park, E. H. : Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharm. 96, 555 (2005). https://doi.org/10.1016/j.jep.2004.10.009
  24. Yu, R. M., Yang, W., Song, L. Y., Yan, C. Y., Zhang, Z. and Zhao, Y. : Structural characterization and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps militaris. Carbohydrate Polym. 70, 430 (2007). https://doi.org/10.1016/j.carbpol.2007.05.005
  25. Chen, C., Luo, S. S., Li, Y., Sun, Y. J. and Zhang, C. K. : Study on antioxidant activity of three Cordyceps sp. by chemiluminescence. Shanghai J. Trad. Chinese Med. 38, 53 (2004).
  26. Han, E. S., Oh, J. Y. and Park, H. J. : Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and production of inflammatory mediators from macrophages and mast cells. J. Ethnopharmacol. 134, 703 (2011). https://doi.org/10.1016/j.jep.2011.01.022
  27. Kim, J. W. and Kim, C. : Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated through Ras-ERK-NF${\kappa}B$. Biochem. Pharmacol. 70, 1352 (2005). https://doi.org/10.1016/j.bcp.2005.08.006
  28. Ha, J. W., Yoo, H. S., Shin, J. W., Cho, J. H., Lee, N. H., Yoon, D. H., Lee, Y. W., Son, C. G. and Cho, C. K. : Effects of Cordyceps militaris extract on tumor immunity. Kor. J. Ori. Med. 27, 12 (2006)
  29. Liu, J., Yang, S., Yang, X., Chen, Z. and Li, J. : Anticarcinogenic effect and hormonal effect of Cordyceps militaris. Zhongguo Yao Za Zhi 22, 111 (1997).
  30. Kim, H. J., Lee, T. H., Kwon, Y. S., Son, M. W. and Kim, C. : Immunomodulatory activities of ethanol extract of Cordyceps militaris in immunocompromised mice. J. Kor. Soc. Food Sci. Nutr. 41, 494 (2013). https://doi.org/10.3746/jkfn.2012.41.4.494
  31. Abbas, A. K., Lichtman, A. H. and Pober, J. S. : Cellular and molecular immunology. 3rd eds., W. B. Saunders Company. Philadelphia, PA. p. 229 (1998).
  32. Abbas, A. K., Murphy, K. and Sher, A. : Functional diversity of helper T lymphocytes. Nature 383, 787 (1996). https://doi.org/10.1038/383787a0
  33. Asadullah, K., Sterry, W. and Volk, H. D. : Interleukin-10 therapyreview of a new approach. Pharmacol. Rev. 55, 241 (2003). https://doi.org/10.1124/pr.55.2.4
  34. Jo, W. S., Choi, Y. J., Kim, H. J., Lee, J. Y., Nam, B. H., Lee, J. D., Lee, S. W., Seo, S. Y. and Jeong, M. H : The antiinflammatory effects of water extract from Cordyceps militaris in murine macrophage. Kor. J. Mycol. 38, 46 (2010).
  35. Kim, H. Y., Kim., K. H., Han, S. H., Lee, S. J., Kwon, J. H., Lee, S. W. and Kim, K. J. : Activation of macrophages by the components produced from Cordyceps militaris. Immune Netw. 7, 57 (2007). https://doi.org/10.4110/in.2007.7.2.57
  36. Lee, Y. S., Kim, H. S., Kim, S. K. and Kim, S. D. : IL-6 mRNA expression in mouse peritoneal macrophages and NIH3T3 fibroblasts in response to Candida albicans. J. Microbiol. Biotechnol. 10, 8 (2000).
  37. Higuchi, M., Higashi, N., Taki, H. and Osawa, T. : Cytolytic mechanism of activated macrophages. tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanism of activated macrophages. J. Immunol. 144, 1425 (1990).
  38. Chen, C. C., Wang, J. K., Chen, W. C. and Lin, S. B. : Protein kinase Cη mediates lipopolysaccharide-induced nitric-oxide synthase expression in primary astrocytes. J. Biol. Chem. 273, 19424 (1998). https://doi.org/10.1074/jbc.273.31.19424
  39. Kim, H. G., Shrestha, B., Lim, S. Y., Yoon, D. H., Chang, W. C., Shin, D. J, Han, S. K., Park, S. M., Park, J. H. and Park, H. I. : Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-${\kappa}B$ through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur. J. Pharm. 545, 192 (2006). https://doi.org/10.1016/j.ejphar.2006.06.047
  40. Choi, J. H., Kim, G. S., Lee, S. E., Cho, J. H., Sung, G. H., Lee, D. Y., Kim, S. Y., Lee, T. H. and Noh, H. J. : Anti-inflammatory effects of Cordyceps militaris extracts. J. Mushroom Sci. Prod. 10, 249 (2012).
  41. Shin, S. M., Park, Y. H., Kim, S. A., Oh, H. E., Ko, Y. W. Han, S. H., Lee, S. J., Lee, C. K., Cho, K., H. and Kim, K. J. : Cordyceps militaris enhances MHC-restricted antigen presentation via the induced expression of MHC molecules and production of cytokines. Immune Netw. 10, 135 (2010). https://doi.org/10.4110/in.2010.10.4.135