• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.029 seconds

Preliminary Study of Gas Generator After Burning Cycle Engine for Upper Stages (상단용 가스발생기 후연소 싸이클 엔진 기초연구)

  • Moon, In-Sang;Shin, Ji-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.159-162
    • /
    • 2008
  • In this study, various cycles of liquid rocket engines were surveyed and specifically gas generator after burning cycle was investigated for upper stage motors. The engines for the upper stage can be categorized into three group based on the cycles and propellants at the diagram. Kerosene engines which adapt the gas generator after burning cycle and are located in the region II, are characterized for high combustion pressure and complexity. This cycle usually needs more than two pumps to use the turbine power efficiently. The fuel line can be divided into the gas generator line and the combustor line, and only the gas generator line is need to be pressured more because the combustion pressure in the gas generator is much higher than that of the combustor. Basically, all the oxidizer goes into the gas generator and than to the combustor, thus the auxiliary LOx pump is not critically necessary. However, for the various reasons, the LOx line requires a booster pump. A gas generator after burning cycle engines produces relatively high specific impuls than that of the open cycle engines. Thus it is suitable for upper stages of launch vehicles.

  • PDF

Design of Driving Control Unit and Milking Robot Manipulator (착유로봇 매니퓰레이터와 구동제어장치 설계)

  • Shin, Kyoo Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.238-247
    • /
    • 2014
  • The milking robot system is very important to detect correctly the teats position in the moving condition of cow. Also, the robot manipulator must control tracking the teat cup to the detected teat position. The presented milking robot is designed using the one point laser sensor for teat position detection. The teats of cow are detected by the laser scanning unit and the manipulator has the function of 3 axes moving control unit. The presented teat detection method and the electrical driving manipulator have the advantages of a simple, low cost and very quiet. The designed manipulator is realized by the totally electrical motor and servo poison control algorithm with velocity PID compensation. The presented robot is realized using the teat detection unit, 4 teat cups, 3 axes robot arm, 6 servo motors and automatic milking control line. The designed robot is experimented in the cow farm and is satisfied with the designed performance specification for milking robot manipulator.

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I (Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1166-1172
    • /
    • 2010
  • Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

The modified Ziegler-Nichols method for obtaining the optimum PID gain coefficients under quadcopter flight system (쿼드콥터 비행 시스템에서 최적의 PID 이득 계수를 얻기 위한 수정된 지글러-니콜스 방법)

  • Lee, Sangrok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.195-201
    • /
    • 2020
  • This paper implemented quadcopter-type drone system and proposed the heuristic method for obtaining the optimum gain coefficients in order to minimize the settling time. Control system for quadcopter posture stabilization reads the posture data from accelerator and gyro sensor, revises the original posture data using Mahony filter, and drives 4 DC motors using PID controller. The first step of the proposed method is to obtain the gain coefficients using the Ziegler-Nichols method, and then determine the optimum gain coefficients using the heuristic method at the next 3 steps. The experimental result shows that the maximum overshoot decreases from 44.3 to 29.8 degrees and the settling time decreases from 2.6 to 1.7 seconds compared to the Ziegler-Nichols method. Therefore, we proved that the proposed method works well in quadcopter flight system with high motor noise while reducing trial and error to obtain the optimal PID gain coefficients.

Methods to Reduce Greenhouse Gas for University Buildings to Make a Low-Carbon Green Campus - With Case Study on the 'E' University -

  • Song, Su Min;Peom, Sung Woo;Park, Hyo Soon;Song, Kyoo Dong
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2014
  • University buildings are energy-guzzling facility that consume more than 10,000TOE within a campus annually. Even the consumption is on an upswing trend. Behind such high consumption are there cheap power rates for education facility, lack of high-efficiency equipment and ever-increasing use of various information equipment. Being keenly aware that greenhouse gas emission increases due to such rise of energy consumption, the present study carried out a case study. In the case study, the study chose the buildings of E university from top 10 universities that consume energy most in Seoul and examined the current status of their energy consumption and greenhouse gas emission. And then it set the reduction target of greenhouse gas by year. Putting aside a middle and long-termed strategy for later endeavor, it first established the 1st year's implementation plan (2014) for energy saving and greenhouse gas reduction with limited budget and according to greenhouse gas reduction target. The plan is specified as follows. Targets for energy saving are mainly divided into two sectors: machine equipment and electric equipment. 7 ideas were proposed. Three ideas to improve machine equipment are to replace with high-efficiency boilers and chillers and to adjust the position of the cooling tower. By doing so, it was estimated that energy could be saved by 176.34TOE in total and greenhouse gas could be reduced by 370.771t$CO_2$-eq. Four ideas to improve electric equipment include the replacement with LED lights, LED emergency lights and high-efficiency motors and the installation of motion sensors. It was calculated that such replacement could conserve 1,076.08TOE (electric energy) and reduce 2,181.420t$CO_2$-eq (greenhouse gas).

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

A Comparison of Collection Concentrations Based on Airborne Toluene Diisocyanates Measurement Methods (공기 중 Toluene diisocyanates 측정방법에 따른 포집농도 비교)

  • Park, Hyung-Sung;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.341-347
    • /
    • 2013
  • Objectives: The aim of this study is to investigate the differences in airborne TDI concentrations based on the filter collection method and liquid collection method and to compare airborne TDIs concentrations by sampling method change when using the filter collection method in the spray-painting process. Methods: For the sample measurement, the filter collection method(OSHA#42) and liquid collection method(NIOSH#5522) were used; for the sampling method, the full-period single sampling and full-period consecutive sampling methods were used. The samples were collected in spray-painting and drying process locations. Results: In all samples collected from the spray-painting and drying process locations through the filter collection and liquid collection methods, greater amounts of 2,6-TDI than 2,4-TDI were detected. When the TDI collection concentrations based on the sampling methods were compared, the concentrations of 2,4-TDI and 2,6-TDI collected by the consecutive sampling method were higher than the concentrations of 2,4-TDI and 2,6-TDI collected by the single sampling method for both the filter collection method and liquid collection method used in the spray-painting process. These differences were statistically significant. Conclusions: When TDI collection concentrations based on the sample measurement methods were compared, the concentration of 2,4-TDI and 2,6-TDI collected through the liquid collection method were higher than the concentrations of 2,4-TDI and 2,6-TDI collected by the filter collection method, and the differences were statistically significant. In the drying process, no difference was shown in the collection concentrations of 2,4-TDI and 2,6-TDI with the two measurement methods.

A Rotordynamic Analysis of a Industrial Centrifuge for Vibration Reduction (산업용 원심분리기의 진동저감을 위한 로터다이나믹 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.879-885
    • /
    • 2008
  • A rotordynamic analysis was performed with a decant-type centrifuge, which is a kind of industrial centrifuge. The system is composed of screw rotor, bowl rotor, driving motors, gear box, and support rolling element bearings. These rotors have a rated speed of 4300 rpm, and were modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis. Design goals are to achieve wide separation margins of lateral critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex analysis rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds and mode shapes, whirl natural frequencies, and unbalance responses under various balance grade. As a result of analysis, the rotordynamic analysis performed by separating a screw rotor and bowl rotor may cause an error in predicting critical speed of entire system. Therefore, the rotordynamic analysis of a coupled rotor combining a screw and bowl rotor must be performed in order to more accurately estimate dynamic characteristics of the decanter-type centrifuge as presented in this paper. Also, rolling element bearings with suitable stiffness should be selected to keep enough separation margin. In addition, in establishing balance grade of a screw and bowl rotor, ISO G2.5 balance grade is more recommended than ISO G6.3, in particular balancing correction of a screw rotor based on ISO G2.5 grade is strongly recommended.

Obstacle Avoidance Algorithm of Hybrid Wheeled and Legged Mobile Robot Based on Low-Power Walking (복합 바퀴-다리 이동형 로봇의 저전력 보행 기반 장애물 회피 알고리즘)

  • Jeong, Dong-Hyuk;Lee, Bo-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.448-453
    • /
    • 2012
  • There are many researches to develop robots that improve its mobility to adapt in various uneven environments. In the paper, a hybrid wheeled and legged mobile robot is designed and a obstacle avoidance algorithm is proposed based on low power walking using LRF(Laser Range Finder). In order to stabilize the robot's motion and reduce energy consumption, we implement a low-power walking algorithm through comparison of the current value of each motors and correction of posture balance. A low-power obstacle avoidance algorithm is proposed by using LRF sensor. We improve walking stability by distributing power consumption and reduce energy consumption by selecting a shortest navigation path of the robot. The proposed methods are verified through walking and navigation experiments with the developed hybrid robot.