DOI QR코드

DOI QR Code

The modified Ziegler-Nichols method for obtaining the optimum PID gain coefficients under quadcopter flight system

쿼드콥터 비행 시스템에서 최적의 PID 이득 계수를 얻기 위한 수정된 지글러-니콜스 방법

  • Lee, Sangrok (School of IT Convergence Engineering, Shinhan University)
  • 이상록 (신한대학교 IT융합공학부)
  • Received : 2020.08.26
  • Accepted : 2020.11.20
  • Published : 2020.11.28

Abstract

This paper implemented quadcopter-type drone system and proposed the heuristic method for obtaining the optimum gain coefficients in order to minimize the settling time. Control system for quadcopter posture stabilization reads the posture data from accelerator and gyro sensor, revises the original posture data using Mahony filter, and drives 4 DC motors using PID controller. The first step of the proposed method is to obtain the gain coefficients using the Ziegler-Nichols method, and then determine the optimum gain coefficients using the heuristic method at the next 3 steps. The experimental result shows that the maximum overshoot decreases from 44.3 to 29.8 degrees and the settling time decreases from 2.6 to 1.7 seconds compared to the Ziegler-Nichols method. Therefore, we proved that the proposed method works well in quadcopter flight system with high motor noise while reducing trial and error to obtain the optimal PID gain coefficients.

본 논문에서는 쿼드콥터형 드론 시스템을 구현하고, PID 제어기에서 안정화 시간을 최소화할 수 있는 이득 계수를 구하기 위한 경험적 방법을 제안하였다. 드론 자세 안정화 제어 시스템은 가속도 센서와 자이로 센서의 자세 정보를 마호니 필터를 통해 보정한 후 PID 제어기를 통해 4개의 모터를 구동한다. 제안된 방법은 기존의 지글러-니콜스 방법을 통해 1차적으로 이득 계수를 구한 후에 각각의 이득 계수를 경험적 방법으로 다시 최적화하는 단계를 거쳐서 결정한다. 최종적으로 구해진 이득 계수를 구현된 시스템에 적용하여 롤 방향으로 20도 회전하는 실험을 수행한 결과 기존의 지글러-니콜스 방법에 비해 최대 오버슈트는 44.3도에서 29.8도로 감소하면서도 안정화시간이 2.6초에서 1.7초로 개선됨을 확인할 수 있었다. 따라서 제안된 방식은 최적의 이득 계수를 구하기 위한 시행착오를 줄이면서도 드론과 같이 모터 잡음이 심한 환경에서도 잘 동작함을 실험을 통해 증명하였다.

Keywords

References

  1. W. Kim. (2019). Design of hybrid communication structure for video transmission in drone systems. Journal of the Korea Convergence Society, 10(11), 9-14. DOI : 10.15207/JKCS.2019.10.11.009
  2. S. R. Lee. (2019). Design and implementation of quadcopter with stable hovering based on IMS sensor, The Society of Convergence Knowledge Transactions, 7(1), 41-46. DOI : 10.22716/SCKT.2019.7.1.007
  3. G. H. Cha, I. Sim, S. G. Hong, J. H. Jung & J. Y. Kim. (2015). A study of method and algorithm for stable flight of drone. Journal of Satellite, Information and Communications, 10(3), 32-37.
  4. W. H. Jung & J. P. Lee. (2016). Implementation of quad-rotor hovering systems with tracking. Journal of Advanced Navigation Technology, 20(6), 574-579. DOI : 10.12673/JANT.2016.20.6.574
  5. H. G. Kim & Y. H. Kim. (2019). Design of water surface hovering drone for underwater stereo photography. Journal of Convergence for Information Technology, 9(6), 7-12. DOI : 10.22156/CS4SMB.2019.9.6.007
  6. J. H. Jin, G. B. Kim & S. Y. Jin. (2019). A study on the flight safety test of drones for the establishment of toy drone safety standards. Journal of Convergence for Information Technology, 9(6), 141-146. DOI : 10.22156/CS4SMB.2019.9.12.141
  7. Y. W. Cho & H. S. Kim. (2014). Posture stabilization control of quadcopter using sensor fusion and modified PID control. Journal of Institute of Korean Electrical and Electronics Engineers, 18(3), 376-382. DOI : 10.7471/IKEEE.2014.18.3.376
  8. S. A. Ludwig & K. D. Burnham. (2018). Comparison of Euler estimate using extended Kalman filter, Madgwick and Mahony on quadcopter flight data. 2018 International Conference on Unmanned Aircraft Systems. Dalas : ICUAS. DOI : 10.1109/ICUAS.2018.8453465
  9. Y. W. Cho. (2018). A tripple nested PID controller based on sensor fusion for quadrotor attitude stabilization. The Transactions of the Korean Institute of Electrical Engineers, 67(7), 871-877. DOI : 10.5370/KIEE.2018.67.7.871
  10. D. S. Jeon & S. R. Lee. (2019). Double-loop PID controller for quadcopter attitude stabilization. The Journal of Korean Institute of Communications and Information Sciences, 44(4), 748-754. DOI : 10.7840/KICS.2019.44.4.748
  11. D. Korsane, D. Mute & A. Halmare. (2014). Comparative analysis of different PID tuning techniques for coupled tanks system. International Journal of Engineering Research and Applications, 41-46.
  12. I. H. Hong, J. W. Chung & C. Y. Oh. (2018). A fusion control for a flexible manipulator using PID controller and BELBIC, Journal of the Korean Society of Mechanical Technology, 20(4), 458-466. DOI : 10.17958/ksmt.20.4.201808.458
  13. H. C. Lee, S. C. Kim, & C. Y. Oh. (2016). A study on position and vibration control of a flexible robot arm endpoint using PID and fuzzy controller, Journal of the Korean Society of Mechanical Technology, 18(4), 529-535. DOI : 10.17958/ksmt.18.4.201608.529
  14. InvenSense. (2013). MPU-6000 an MPU-6050 product specification revision 3.4. PS-MPU-6000A-00. www.invensense.tdk.com
  15. R. Mahony, T. Hamel & J-M Pflimlin. (2008). Nonlinear complementary filters on the special orthogonal group. IEEE Trans. on Automatic Control, 53(5), 1203-1217. DOI : 10.1109/TAC.2008.923738
  16. R. Kumar, S. K. Singla & V. Chopra. (2015). Comparison among some well known control schemes with different tuning methods. Journal of Applied Research and Technology, 13, 409-415. DOI : 10.1016/J-JART.2015.07.007