• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.031 seconds

Fault diagnosis of Induction motors by DFT based feature extraction and distance similarity (DFT기반 특징추출 및 거리유사도에 의한 유도전동기 고장진단)

  • Park, Chan-Won;Kwon, Mann-Jun;Park, Sung-Mu;Lee, Dae-Jong;Chun, Myung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.157-158
    • /
    • 2007
  • 본 논문에서는 산업전반에 걸쳐 널리 사용되는 유도전동기의 고장상태를 검출하기 위해 DFT(Discreet Fourier Transform)와 LDA에 기반을 둔 진단 알고리즘을 제안하고자 한다. 실험에 의해 측정된 전류값을 DFT에 의해 시간공간에서 주파수 공간으로 변환한 후에 LDA기법을 이용하여 특징벡터를 산출한 후 거리 유사도에 의해 진단이 수행된다. 제안된 방법의 타당성을 보이기 위해 여섯 가지의 고장을 대상으로 다양한 조건하에서 실험한 결과 기존 방법에 비교하여 우수한 결과를 나타냈다.

  • PDF

Parameters Estimation of Five-Phase Squirrel-Cage Induction Motor in Changing Variable Frequency (주파수 변화에 따른 5상 농형 유도전동기의 정수 추정)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.241-247
    • /
    • 2014
  • This paper propose a variable parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental of variable input power frequency. There are results of stator winding test, no-load test, locked-rotor test, variable actual load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

Implementation of In-wheel Motor Driving System for Electric Vehicle (In-wheel 모터를 이용한 전기자동차 구동시스템의 구현)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

Prediction of Driver's Cognitive Workload using Cognitive Architecture : ACT-R (ACT-R 인지 아키텍처를 이용한 운전자의 인지 부하 측정)

  • Lim, Soo-Yong;Myung, Ro-Hae;Hong, Gi-Beom
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.187-195
    • /
    • 2012
  • The driver model based on the ACT-R cognitive architecture was developed in order to predict the performance and cognitive workload of a driver operating HVI devices. In the 10 HVI tasks, the predicted performance time and cognitive workload by the ACT-R driver model was well matched and highly correlated with the mean of performance times and subjective workload ratings from 15 participants, respectively. It is strongly proposed that the ACT-R driver model in this study can be applied to evaluate the usability of a new HVI design with less cost in the early stage of system development.

Comparison of Flywheel Systems for Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors

  • Kim, Yoon-Ho;Jeong, Yeon-Suk;Jeong, Yeon-Suk
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in a power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration and noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power system. Among various approaches, in this paper, two kinds are compared and evaluated. They are flywheel compensators bases on secondary excitation of WRIM(wounded rotor induction motor) and SCIM(squirrel cage induction motor). Both systems have a common structure. They use a flywheel as an energy storage device and use PWM inverters. The main differences are the size and rating of the converter used.

  • PDF

Compensation for Time Delay of Sensors for Driving Motors by Networks (네트워크에 의한 전동기 구동용 센서의 시간지연 보상)

  • Ahn, J.R.;Chun, T.W.;Lee, H.H.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.587-590
    • /
    • 2005
  • In this paper, the PWM inverter-motor drive system including sensor is controlled through the network. The algorithm to compensate for the time delay of ac current and ac voltage sensors due to the network is proposed. The delay time of sensors is kept nearly constant, using the synchronous signal and timers. The error between the real and estimated ac signals can be reduced by using two slopes for estimating the value of at signals. The proposed algorithms are verified with the simulation studies and experiments.

  • PDF

Sensorless Control of Switched Reluctance Motor Using Impressed Voltage Pulse Algorithm (스위치드 릴럭턴스 모터의 센서리스제어를 위한 전압펄스주입 알고리즘)

  • Yoon, Yong-Ho;Jung, Kyun-Ha;Lee, Tae-Won;Won, Chung-Yuen;Kim, Ji-Won
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.33-35
    • /
    • 2005
  • We propose an improved sensorless drive method of Switched Reluctance Motors using impressed voltage pulses. Conventional impressed voltage pulse method has a problem of phase delay because of low -pass filter. So In this paper we propose an unproved sensorless driving method based on the impressed voltage pulse using new phase-shift circuit technique that overcomes the phase delay and start-up problem.

  • PDF

A Study on the controller for a high speed PMSM using DSP (DSP를 사용한 PMSM 초고속 전동기 제어기에 관한 연구)

  • Oh, Dong-Seob;Oh, Sung-Up;Park, Min-Ho;Seong, Se-Jin;Kim, In-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.39-41
    • /
    • 2005
  • In this paper, a study on the controller for high speed PMSM (Permanent Magnet Synchro-nous Motor) is described. PMSM can be driven over 50,000 rpm because it has no brush and commutator structure. It also has less EMI noise and easy cooling structure compare to the other motors. The controller was designed to have a capability to drive 20kw, 42,000rpm high speed motor system. A senseless vector control method was studied based on d-q conversion theory to have a high driving efficiency. The control board was designed using TMS320C33 and the performance was verified by experimental results on driving the inverter and motor system.

  • PDF

High Performance control of Linear Hybrid Stepping Motor with Force Ripple Compensator (추력 리플을 보상하는 선형 하이브리드 스테핑 전동기의 고성능 제어)

  • Hwang, Tai-Sik;Seok, Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.240-242
    • /
    • 2005
  • The linear hybrid stepping motors (LHSM) has been widely used due to its simple structure and low cost control. Despite of its attractive features, the conventional LHSM has the multiples of 4th times harmonic reluctance force from excitation current and cogging force from space harmonic of permeance. This paper propose a new LHSM, which the mechanical and electrical phase difference are 45$^{\circ}$. The proposed motor shows a unique ability to deliver low detent force and we propose a closed-loop control scheme to attack the ripple force for high performance applications. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed modeling and control scheme.

  • PDF

Development of Inter Turn Short Fault Model of IPM Motor (IPM모터의 턴쇼트 고장모델에 관한 연구)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.