• Title/Summary/Keyword: motors

Search Result 3,621, Processing Time 0.028 seconds

Development of Permanent Magnet Synchronous Motor for High-speed Electric Multiple Unit - 400km/h eXperimen (차세대 고속전철용 영구자석동기 전동기 개발)

  • Kim, Jung-Chul;Kim, Bong-Chul;Park, Yeong-Ho;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.470-474
    • /
    • 2010
  • Up until now, power centralized trains have been produced due to the maintenance convenience and comfortableness, but there are some problems, such as limitation of viscosity and maintenance difficulty of railroad due to recently increasing axle mass. In order to improve the problems, power decentralized trains have been developed to improve traction power. In the case of using electrical braking system, it is possible to improve braking friction power. Induction motors have been developed for power decentralized high speed train because of less structural defection, and low maintenance and production cost. However, induction motors have limitations, such as assuring enough power capacity and efficiency with reduced size. PMSM (Permanent magnet synchronous motor) have been newly developed to improve shortcomings of induction motors. The PMSM can be produced small and light weighted. Also if the PMSM and induction motors have the same size and power capacity, the PMSM have better power efficiency. In this pater, the prototype and modified type of PMSM for "High-speed Electric Multiple Unit-400km/h eXperimmen" will be introduced.

  • PDF

Characteristics of Insulation Diagnosis and Failure in 6.6 kV Motor Stator Windings (6.6 kV 전동기 고정자 권선의 절연진단과 절연파괴 특성)

  • Kim, Hee-Dong;Kong, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.309-314
    • /
    • 2012
  • To assess the condition of stator insulation, nondestructive and overpotential tests were performed on four high voltage motors. The stator windings under these tests have nominal ratings of 6.6 kV. After completing nondestructive tests, the AC overvoltage applied to the stator windings was gradually increasing until insulation failure in order to obtain the breakdown voltage. No. 1, No. 2, No. 3 and No. 4 of 6.6 kV motors failed near rated voltage of 18.4 kV, 19.8 kV, 19.7 kV and 21.7 kV, respectively. The breakdown voltage of four motors was higher that expected for good quality coils(14.2 kV) in 6.6 kV motors. Almost all of failures were located in a line-end coil at the exit from the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of AC current, dissipation factor($tan{\delta}$) and partial discharge magnitude.

A Study on the Sensorless Speed Control and Its Application of DC Motor (DC 모터의 센서리스 속도제어 및 그 응용에 관한연구)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 1999
  • DC motors are widely used in many industrial fields as the actuator of the robot and the driving power motors of the electrical vehicle, Usually in the sensors of DC motors such as the encoder the tachogenerator and the potentiometer etc. are applied, But usage of these sensors results in the increased price and operating cost such that the application of the motors are limitted. To solve this problem another method to construct low cost control system is investigates. In this paper a new speed control method for DC motor is proposed. This method uses motor parameters instead of using speed or position sensors. In this way the angular velocity is estimated by the measure-ment values of the armature voltage and current instead of measuring the sensor signal. This paper presents an alorithm for estimating the angular velocity of DC motor The effectiveness of the proposed method is verified by experimental results. Also the applicability of the proposed method is presented by applying to the velocity contol of a wheeled mobile robot.

  • PDF

Development of a dynamics analysis model of mechanical system driven by DC motors (DC 모터 구동시스템의 동역학 해석 모델 개발)

  • 김무진;문원규;배대성;박일한;최진환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.497-500
    • /
    • 2002
  • When one is interested in the dynamics of a mechanical system with electric motors, the force generated by the motor is generally considered as only an applied torque or force independent of mechanical state variables such as velocity. For a system operated in non-steady dynamic conditions, however, the usual analysis approach may fail to predict some characteristics in the dynamic behaviors because of electromechanical coupling effects. In this paper, we propose dynamics analysis model in which dc motor dynamics with the electromechanical coupling effects are embedded to mechanical dynamics models. The do motor is modeled based on its equivalent circuit model and included in the dynamics solving algorithm which we developed before, called generalized recursive dynamics formula. The developed dynamic analysis model is effective and realistic for analysis of electromechanical dynamics of a system with do motors. The developed model is evaluated by constructing and simulating the flexible antennas of an artificial satellite driven by do motors.

  • PDF

Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant (발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석)

  • Bae, Yong-Chae;Lee, Hyun;Kim, Yeon-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

AN EXPLORATORY STUDY OF THE EMISSION REDUCTION TECHNOLOGIES COMPLIANT WITH SULEV REGULATIONS

  • Kim, In Tak;Lee, Woo Jik;Yoon, Jong Seok;Park, Chung Kook
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.63-75
    • /
    • 2001
  • This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spray atomization, quick warm-up through coolant control shut of, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, after-treatment such as thin-wall catalyst, HC-adsorber and EHC and etc, through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.

  • PDF

Assessment of Insulation Aging in 6.6 kV Class High Voltage Motor Stator Windings (6.6 kV급 고압전동기 고정자 권선의 절연열화 평가)

  • Kim, Hee-Dong;Kim, Byong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1067-1071
    • /
    • 2006
  • Prior to destructive testing, diagnostic tests were performed in ten high voltage motors. Diagnostic tests included polarization infer, ac current, dissipation factor$(tan{\delta})$ and partial discharge magnitude. The rewind of motet slater insulation at rated voltage is assessed by the results of these tests. After completing the diagnostic tests, the stator windings of motors were subjected to gradually increasing ac voltage, until the insulation punctured. No. 8 motor failed near rated voltage of 19.0 kV. The breakdown voltage of No. 4 motet was 7.0 kV which is lower that expected for good quality coils in 6.6 kV class motors. The failure was located in a line-end coil at the exit from the core slot. These two motors began operation in 1994. While testing No. 7 motor, flashover occurred between the stator winding and the stator frame at 15 kV. The relationship between the diagnostic test and the drop in insulation breakdown voltage was analyzed.

Design of Adaptive Controller for Efficiency Optimization of Induction Motors (유도전동기 효율의 최적화를 위한 적응제어기 설계)

  • Hwang, Young-Ho;Park, Ki-Kwang;Shin, In-Sub;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.293-294
    • /
    • 2007
  • This paper addresses the adaptive controller for efficiency optimization of induction motors. The paper describes an adaptive controller based on-line efficiency optimization control of a drive that uses a direct vector controlled induction motors. To improve the efficiency of the induction motors, it is important to find the optimal flux reference that minimize power loss. The proposed optimal flux reference is derived using a power loss function that is constructed with stator resistance losses, rotor resistance losses and core losses. The proposed sliding mode flux observer generates estimates the unmeasured rotor fluxes. An optimal efficiency controller has goal of maximizing the efficiency for a given speed and load torque. A simulation shows the effectiveness of the proposed technique.

  • PDF

The Vibration Suppression using Reactive Power Compensator for Speed Control of Parallel Connected Dual Fan Motors fed by a Single Inverter (단일 인버터 기반 에어컨용 실외기 팬 모터 병렬운전에서의 무효전력보상기를 이용한 맥동저감 기법)

  • Yun, Chul;Kwon, Woo-Hyen;Cho, Nae-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2008-2013
    • /
    • 2016
  • This paper proposes analysis and suppression method for reactive power vibration of the slave motor caused by back-EMF mismatch between the master and the slave motor and stator resistance during middle-low speed operation. The master and slave motors are parallel connected dual SPMSMs(Surface mounted Permanent Magnet Synchronous Motors) fed by a single inverter. To suppress vibration of reactive power, RPC(Reactive Power Compensator) proposed in this paper analyzes flux-axis current vibration of the slave motor that occurs in middle-low speed operation using a mathematical model of the fan motor. And RPC adds vibration components detected from flux-axis current of the slave motor to flux-axis current of the master motor. The results of experiment conducted verify the efficacy of the proposed method.

Characteristics Analysis of Segmental Rotor Type 3-Phase SRMs (분절회전자형 3상 SRM의 특성해석)

  • Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, two types of switched reluctance motors (SRMs) with segmental rotors are presented in detail. The first is a 6/5 segmental rotor type, whereas the second is a 12/8 segmental rotor type. Both motor types have the same stator, rotor, and winding configurations. The stator is constructed with special stator poles, namely, exclusively designed exciting and auxiliary poles. The rotor is constructed from a series of discrete segments, each of which is embedded into the nonmagnetic isolator. The windings are only wound on the exciting poles, and no winding is wound on the auxiliary poles. Given these configurations, short flux paths and high flux-linkage utilization rate are achieved in the proposed motors, which may reduce the magnetomotive force requirement and increase the electrical utilization of a machine. To verify the effectiveness of the proposed motors, their characteristics, such as magnetic flux distribution, flux-linkage, torque, radial force, and efficiency, are analyzed and compared with those of a conventional 12/8 SRM. Meanwhile, two prototypes, one for each proposed segmental rotor type, are also designed and manufactured. Finally, the validity of the proposed motors is further verified by test results.