• 제목/요약/키워드: motor current

검색결과 3,082건 처리시간 0.315초

유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구 (A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor)

  • 김종겸
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

Optimal Current Control Method of BLDC Motor Utilizing Maximum Torque Point

  • Park, Chang-Seok;Jang, Jung-Hoon;Jung, Tae-Uk
    • 한국산업융합학회 논문집
    • /
    • 제20권3호
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes an optimal current control method for improving efficiency of Brushless Direct Current (BLDC) motor. The proposed optimal current control method is based on the maximum torque point analysis of Finite Element Analysis (FEA). The proposed method can increase the effective voltage at the maximum torque point of BLDC motor and increase the output torque per unit current to increase the efficiency. In order to verify the proposed optimal current control method, have developed the prototype of a 50 [W] class motor drive and experimented by 20 [W] motor using the dynamometer set. This was verified.

머시닝센터에서 이송전류신호를 이용한 이송계의 마찰특성 규명과 이를 고려한 절삭력의 간접측정 (Firctional Behavior and Indirect Cutting Force Measurement in a Machining Center Using Feed Motor Current)

  • 김기대;최영준;오영탁;주종남
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.78-87
    • /
    • 1997
  • In machine tools, frictional force exists between the table and the guideways, and in ballscrews. In this paper, feed motor current measured by a hall sensor is used to calculate the motor torque. Some frictional phenomena are studied in feed drive systems, such as the relationship between feedrate and frictional torque, and chip cover effects on frictional torque. Considering frictional phenomena, the relation- ship between the feed froce and the feed motor current id obtained. Feed force can be well estimated by feed motor current measurement considering frictional behavior. The relationship between the cutting force and the feed motor current is slightly different between up milling and down milling due to the effect of y direc- tional cutting force on frictional torque.

  • PDF

주축 및 Z축 모터전류를 이용한 드릴파손 예측에 관한 연구 (Study on Prediction of Drill Breakage using Spindle and Z-axis Motor Currents)

  • 김화영;안중환
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.101-108
    • /
    • 1999
  • A reliable and practical monitoring of drill breakage is a crucial technique in automatic machining system. In this study, a real-time monitoring system was developed to predict drill breakage using both spindle and z-axis motor current. Drill breakage is monitored by detecting the level of residual motor current which is obtained through the moving average filter algorithm. The residual exhibits a feature of sharp decrease just before drill breakage. Therefore, drill breakage can be predicted by detecting this characteristic of residual component. Z-axis motor current is better to predict the drill breakage than spindle motor current, because the former is faster in response than the latter when drill breakage is occurred. The evaluation experiments have shown that the developed monitoring system works very well.

  • PDF

리액터 탭 절환에 의한 유도전동기의 기동 특성 (Starting Characterization of Induction Motor using Reactor Tap Change)

  • 김종겸
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.24-28
    • /
    • 2014
  • An induction motor is most widely used to obtain driving force in the industrial field. The induction motor is generated a high current at starting. A starting current is often more than five times of rated current. A high starting current can cause problems such as voltage drop in the power system. In order to solve these problems, a reactor starting method has been widely applied in a large motor capacity. There are differences in the operating characteristics of induction motor corresponding the switching time of reactor tap. In this study, I analyzed that current, torque, power of induction motor are different from changing time and tap setting values of reactor tap.

전동기 시스템의 미지외란 및 전류 관측기 설계 (Design of Unknown Disturbance and Current Observer for Electric Motor Systems)

  • 이명석;정경모;공경철
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.615-620
    • /
    • 2015
  • DOB (Disturbance Observer) is an useful control method for estimating the disturbance applied to dynamic systems. Disturbance observer can be used to implement a robust control system to generate a control input for rejecting the disturbance, and it can be also used to estimate the disturbance to obtain information. The system that uses disturbance estimation is investigated for high performance control such as automatic door systems, walking robot and electric power steering system in vehicles. In this paper, a novel disturbance observer which is called disturbance and current observer for estimating load torque in the motor system is proposed. The difference between the DOB for disturbance rejection and DCOB is mathematically verified. Current and angular velocity are required for estimating the load torque of the motor in DOB. However, the DCOB can estimate load torque and current without current sensor. DCOB is designed based on modeling of the motor system. Appropriate Q-filter is selected and the applicability of DCOB is verified by simulation. The estimated disturbance and current of the electric motor can be verified without current sensor, as experiments of the actual motor system.

주행 집전계 시험기의 주행 대차용 선형 유도전동기 설계에 관한 연구 (A Study on Design of Linear Induction Motor in Dynamic Tester for Catenary-current Collection)

  • 함상환;조수연;이주
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.771-775
    • /
    • 2011
  • This paper presents design process of linear induction motor in dynamic tester for catenary-current collection. To minimize length of rail for dynamic tester for catenary-current collection, accelerating performance of the linear induction motor is very important. So the design process of linear induction motor considered in this paper is different with general design process of linear induction motor, because dynamic tester has three type driving region, as accelerating region, constant speed region, and braking region. Considering accelerating performance of motor, distance and time from starting point to constant speed region were concerned for load condition of motor. Designed linear induction motor was analyzed by 2-dimensional finite element method. Using mechanical dynamics simulation with analysis result of 2-dimensional finite element method and accelerating performance of designed motor was proved.

동기릴럭턴스전동기의 전류센서리스 제어 성능 고찰 (Considerations on the Performance of Current Sensorless Control of a Synchronous Reluctance Motor)

  • 신명호
    • 조명전기설비학회논문지
    • /
    • 제26권1호
    • /
    • pp.61-65
    • /
    • 2012
  • Some works about the current sensorless control of a synchronous reluctance motor have been presented. However, there is no analysis about the performance and the detuning effect of the current sensorless control. This paper presents the problems and the detuning effect of the current sensorless control of a synchronous reluctance motor by simulation results. In addition, torque limiter is proposed to limit the torque current within the torque limit.

차량용 보조발판의 센서리스 직류전동기 위치 제어 (Sensorless Position Control of DC Motor for the Auxiliary Scaffolding)

  • 이동희
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.389-395
    • /
    • 2019
  • This paper presents the sensorless position control of an auxiliary scaffolding step system for vehicles using DC motors. The designed auxiliary scaffolding step has a mechanical protector at the stop position. At this position, the scaffolding is forcibly stopped by the mechanical protector, and the motor current is dramatically increased to the stall current of the DC motor, thereby increasing the electrical damage. In this study, the estimated back EMF- and current model-based observers are proposed to estimate the motor speed and stop position. A simple V/F acceleration voltage pattern is used to operate the auxiliary scaffolding system. The estimated moving position is adopted to determine the stop position of the DC motor with the load current state. The operating current of the DC motor can be reduced by the estimated moving position and V/F acceleration pattern. At the stop position, the proposed sensorless position controller can smoothly stop the DC motor with the estimated moving position and reduced load current without any mechanical and electrical stress from the stall current from the mechanical protector. The proposed control scheme is verified by the comparison of simulations and experiments.

유도전동기의 강인 제어를 위한 뉴로-퍼지 설계 (Design of neuro-fuzzy for robust control of induction motor)

  • 송윤재;강두영;김형권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF