• Title/Summary/Keyword: motor core

Search Result 529, Processing Time 0.034 seconds

An Analysis on Core Loss Characteristics for Linear Oscillatory Motor with Permanent Magnet Mover (영구자석 가동자를 갖는 직선형 왕복운동 전동기의 철손 특성 해석)

  • Jang, Seok-Myeong;Kim, Kwan-Ho;Choi, Jang-Young;Cho, Han-Wook;Jeong, Sang-Sub;Seo, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1023-1024
    • /
    • 2011
  • This paper deals with an improved core loss calculation of Linear Oscillatory Motor from curve fitting method using modified Steinmetz equation considered anomalous loss. For an accurate calculation, magnetic field analyses in stator core considering, magnetic field analyses in stator core considering the time harmonics are performed. And using the nonlinear finite element analysis (FEM), we applied separated rotating and alternating magnetic filed to core loss calculation.

  • PDF

Characteristic Analysis using Equivalent Magnetic Circuit Network Method for Permanent Magnet Excited Transverse Flux Linear Motor with Spiral Core in a Mover (스파이럴 이동자 코어를 가지는 영구자석여자 횡자속 선형전동기의 등가자기회로망법을 이용한 특성해석)

  • Lee, Ji-Young;Kim, Ji-Won;Woo, Byung-Chul;Kang, Do-Hyun;Hoang, Trung Kien;Kim, Kwang-Woon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.794_795
    • /
    • 2009
  • This paper presents an analysis method for a permanent magnet excited Transverse Flux Linear Motor (TFLM) with spiral core in a mover. The spiral core is used as mover core in order to make 3-dimensional magnetic flux path at the TFLM which has 3-dimensional magnetic flux flow. Magnetic field is analyzed by three-dimensional Equivalent Magnetic Circuit Network (EMCN) method. And an imaginary part, 'flux barrier,' is introduced to consider the spiral core characteristic. The computed thrust forces is compared to the measured results to show the effect of presented analysis method.

  • PDF

Rotational loss assessment of flywheel energy storage system by Motor/Generator core (전동/발전기 코어에 의한 초전도 플라이휠 에너지 저장장치의 회전손실 특성 평가)

  • Lee, Jeong-Phil;Han, Young-Hee;Jung, Se-Yong;Han, Sang-Chul;Jeong, Nyeon-Ho;Sung, Tae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1775-1781
    • /
    • 2007
  • In this paper, the rotational loss of the superconductor flywheel energy storage system (SFES) by motor/generator stator core was assessed. To do this, the vertical axial type SFES with journal type superconductor bearing was manufactured. To quantitatively assess the rotational loss by the stator core, the rotational losses by superconductor bearing and the degree of a vacuum were measured. In case of variation of the inner radius and outer radius of the stator core, the rotational losses were measured. From the experimental results, It is confirmed that the rotational loss can be reduced by means of the optimal stator core design.

Characteristics Analysis of V Shape Pole Changing Memory Motor using Finite Element Method (유한요소법을 이용한 V형상 극변환 메모리 모터의 특성 분석)

  • Kim, Young-Hyun;Kim, Su-Yong;Kim, Jung-Woo;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.872-877
    • /
    • 2015
  • The Permanent Magnet (PM) machine used at speed control using field-weakening control method. But the field-weakening current, which reduces the field flux for high speeds, causes significant copper and core losses. Therefore, this paper deals with the PM performance evaluations in a pole changing memory motor (PCMM). The PCMM can change the number of magnetic poles and produce two types of torque. When the motor operates with eight poles, it produces a magnetic torque at low rotational speeds. When the motor changes to four poles, it produces both magnetic torque and reluctance torque at high speeds. The paper explain the principle and basic characteristics of the motor by using a finite element method magnetic-field analysis, which consists of a PM magnetized by a pulse d-axis current of the armature winding. The results of our experiment show that the proposed motor reduces core loss by 10% and 55% under no-load and load conditions, and doubles the speed range of the motor.

Conceptual Design of a 5 MW HTS Motor (5 MW 고온초전도 모터 설계)

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, J.D.;Kim, Y.C.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.36-42
    • /
    • 2008
  • The superconducting motor shows several advantages such as smaller size and higher efficiency against conventional motor especially utilized in ship propulsion application. However, this size reduction merit appears in large capacity more than several MW. We are going to develop a 5MW class synchronous motor with rotating High-Temperature Superconducting (HTS) coil. that is aimed to be utilized for ship propulsion so it has very low-speed, The ship propulsion motor must generate very high electromagnetic torque instead of low-speed. Therefore. the rotor (field) coils need very large magnetic flux that results in large amount of expensive HTS conductor for the field coil. In this paper a 5MW HTS motor for ship propulsion is considered to be designed with construction cost reduced via HTS field coil cost reduction because HTS conductor cost is critical factor in the construction cost of HTS motor. In order to reduce the HTS conductor amount. iron-cored rotor types are considered. so several cases with iron-core are compared one another and with an air-core case.

Fixed Homography-Based Real-Time SW/HW Image Stitching Engine for Motor Vehicles

  • Suk, Jung-Hee;Lyuh, Chun-Gi;Yoon, Sanghoon;Roh, Tae Moon
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1143-1153
    • /
    • 2015
  • In this paper, we propose an efficient architecture for a real-time image stitching engine for vision SoCs found in motor vehicles. To enlarge the obstacle-detection distance and area for safety, we adopt panoramic images from multiple telegraphic cameras. We propose a stitching method based on a fixed homography that is educed from the initial frame of a video sequence and is used to warp all input images without regeneration. Because the fixed homography is generated only once at the initial state, we can calculate it using SW to reduce HW costs. The proposed warping HW engine is based on a linear transform of the pixel positions of warped images and can reduce the computational complexity by 90% or more as compared to a conventional method. A dual-core SW/HW image stitching engine is applied to stitching input frames in parallel to improve the performance by 70% or more as compared to a single-core engine operation. In addition, a dual-core structure is used to detect a failure in state machines using rock-step logic to satisfy the ISO26262 standard. The dual-core SW/HW image stitching engine is fabricated in SoC with 254,968 gate counts using Global Foundry's 65 nm CMOS process. The single-core engine can make panoramic images from three YCbCr 4:2:0 formatted VGA images at 44 frames per second and frequency of 200 MHz without an LCD display.

The study on the dynamic analysis of a step motor (스텝 모으터의 동특성해석에 관한 연구)

  • 천희영;박귀태
    • 전기의세계
    • /
    • v.29 no.1
    • /
    • pp.58-64
    • /
    • 1980
  • In this paper, this objective is to obtain the mathematical model which describes the dynamic characteristics of variable reluctance(VR) step motor, the most important and most widely used motor in practice. In the development of the mathematical model for VR step motor, first the general nonlinear dynamic equations which describe the N-phase VR step motor are derived. These general equations are then applied to the multiple-step type of VR step motor in case, for simplicity, maynetic saturation and core lossess in the iron are neglected. These nonlinear dynamic equations are numerically analysed by the computer simulation, through which the performance characteristics of a step motor undertest are investigated under the various operating conditions.

  • PDF

Investigation of Cogging Effect in Bisymmetric Dual Iron Core Linear Motor Stage (대칭구조 철심형 리니어모터 이송계에서의 코깅현상에 관한 연구)

  • Oh, Jeong-Seok;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents bisymmetric dual iron core lineal motor stage for heavy-duty high precision applications such as large area micro-grooving machines or high precision roll die machines. In this stage, two iron core linear motors are installed in laterally symmetric way to cancel out the attractive forces. Main focus was given to analyzing the effect of cogging force and moment for two different layouts, which are symmetric and half-pitch shifted ones. Experimental results showed that the symmetric layout is more adequate for high precision applications because of its clear moment cancellation effect. It was also verified that the effect of the residual cogging moment can be suppressed further by increasing the bearing stiffness. One problem of the symmetric layout is added cogging force which hinders smooth motion, but its effect was relatively small compared with that of moment cancellation.

The Weldability of Laminated Stator Core for Motor by Pulsed Nd:YAG Laser [ I ] - The Effect of Processing Parameter on Weldability of Laser - (펄스 Nd:YAG 레이저를 이용한 모터용 스테이터 적층코어의 용접특성 [ I ] - 레이저 용접성에 미치는 가공변수의 영향 -)

  • Kim Jong-Do;Yoo Seung-Jo;Kim Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.629-635
    • /
    • 2006
  • Manufacture of motor by laser has been studying realization that was demands on market for lightening and miniaturization. Moreover. early in the 1980s. manufacture of parts for automobiles by laser welding was already successfully introduced. The purpose of this study was to develop production technology of the high quality laminated stator core for motor by pulsed Nd:YAG laser heat source. In the event of adjusting defocus and voltage to control humping in laser welding of the laminated core. sound bead could be obtained. but deep penetration was not. Therefore. explosive evaporating plasma was controlled by adjustment of peak power on pulse width. Particularly, because explosive evaporating plasma induced high peak power, made molten metal in keyhole scatter. a suitable adjustment of peak power was required to obtain sound bead. As a results of experiment. sound bead and deep penetration could be obtained.

Improve of efficiency of Multi D.O.F spherical motor through the reduction of eddy current loss (다자유도 구형 구동 모터의 와전류 손실 저감을 통한 효율 향상 연구)

  • Hong, Kyung-Pyo;Lee, Won-Kook;Lee, Ho-Joon;Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.947-948
    • /
    • 2011
  • Efficiency of Multi D.O.F spherical motor is one of the important performance indicators. So Through the reduction of eddy current loss on how to improve the efficiency were studied. Stator iron core's material with high permeability and resistivity of material using the eddy current loss was reduced. However, it was the disadvantages of production and economic. For these reasons, prevent eddy current loss of the iron core of multi D.O.F spherical motor as a viable alternative to motor using rotor with double-air gap.

  • PDF