• Title/Summary/Keyword: motor core

Search Result 529, Processing Time 0.026 seconds

Evaluation of DC Brush-less Motors Using Powder Magnetic Cores

  • Mori, Katsuhiko;Nakayama, Ryoji;Kanagawa, Kinji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1169-1170
    • /
    • 2006
  • We made a high-speed motor and a DC brush-less motor for factory automation (FA) to investigate applicability of powder magnetic core to motor application, and compared those performances with the similar motors having conventional electro magnetic steel core. Permeability and saturated magnetization of powder magnetic core are less than those of elect romagnetic steel core, however output performances of each core motor are almost the same. The FA motor with powder magnetic core using three-dimensional magnetic circuit showed higher torque than the same volume motor with electromag netic steel core.

  • PDF

Reliability Evaluation of a Motor Core Applied Ultrasound Infrared Thermography Technique (초음파 적외선열화상 기법을 적용한 모터 코어의 신뢰성 평가)

  • Jung, Yoon-Soo;Roh, Chi-Sung;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • This study used an ultrasound infrared thermography technique to detect issues in the motor core of typical power equipment. The current defect inspection method of the motor core is often incomplete (due to the limits of visual inspection) and thus the reliability of the motor core is reduced. Therefore, in this study, experiments were carried out to increase the reliability of the test by using an ultrasonic infrared thermal non-destructive inspection method to image the motor core. The ambient temperature of the experimental system was maintained at $25^{\circ}C$. Experiments were carried out to examine a damaged motor core and a defect-free motor core. Experimental results confirm the technique clearly detected defects in the motor core, thereby confirming the possibility of using this technique in the field.

An Experimental Study on the Motor-Core Die Development of HEV Traction Motor (하이브리드(HEV) 구동 모터용 모터-코어 금형 개발에 관한 실험적 연구)

  • Hong, Kyeong-Il;Kim, Se-Hwan;Choi, Kyeo-Gwang;Jung, Hyun-Suk;Lim, Se-Jong
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.34-37
    • /
    • 2015
  • The HEV Traction Motor Core manufacturing technology is a core component of HEV Traction Motor Core (Iron Core) is a key technology for the manufacture of eco-friendly automotive industry is essential for the competitiveness of the country must obtain the technology. In this study, the HEV Motor Core of the Rotor manufacturing technology, the Stator manufacturing technology applied to Press Lamination Die and Core(Iron Core) was developed and the results are discussed.

  • PDF

Design and Characteristics Investigation of Air-core Tubular Linear BLDC Motor (공심슬롯 원통형 선형 BLDC 전동기의 설계 및 특성 고찰)

  • Moon, Ji-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.603-609
    • /
    • 2008
  • Slotless linear brushless DC motor are widely used in precision machine applications because of their advantages such as low of detent force, negligible iron loss. But they have a disadvantage such as low thrust density, thrust ripple, and excessive use of permanent magnet materials. These lead to undesirable performance and high production cost. In this paper, we deal with the design and characteristics investigation of a air-core tubular linear brushless DC(TLBLDC) motor with air-core stator and permanent magnet mover. And to investigate the static and dynamic characteristics of air-core TLBLDC motor, the prototype machine is manufactured and analyzed by F.E.M. and Matlab simulink simulations. Especially, dynamic characteristics of air-core TLBLDC motor driven with 6 step inverter are simulated by F.E.M.coupling with external circuit and Matlab simulink program, and measured for the prototype motor. The simulation results are compared to the experimental results such as current waves, thrust and speed curve.

Analysis on Core Loss of Brushless DC Motor Considering Pulse Width Modulation of Inverter

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1914-1920
    • /
    • 2014
  • In this paper, characteristics of blushless direct current (BLDC) motor including core loss are analyzed considering pulse width modulation (PWM) of inverter. Input voltage of BLDC motor due to PWM is calculated considering duty ratio and carrier frequency of inverter in order to control torque or speed of BLDC motor. For the calculation of core loss, the input current with harmonics due to PWM voltage is calculated by using equivalent circuit model of BLDC motor according to switching pattern and carrier frequency. Next, core loss is analyzed by inputting the currents as a source of BLDC motor for FEM. Characteristics including core loss are compared with ones without PWM waveform according to reference speed.

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

Test Results of SMC Cores as Some Types of Motor Cores

  • Asaka, Kazuo;Ishihara, Chio;Enomoto, Yuuji;Ito, Motoya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.796-797
    • /
    • 2006
  • SMC(Soft Magnetic Composite) materials which we have newly developed were studied for their applying effects. It shows almost the same motor output power as the laminated Si-steels of 0.35mm in thickness, although core loss of SMC is about 1.5 times that of the laminations. As shown in the results, the SMC motor core is sufficient for real use as a motor core. Furthermore, a 3-D shaped motor core made of SMC can improve approximately 20% of the output compared with the same size motor made of laminations.

  • PDF

Effect of Material Properties on Core Loss in Switched Reluctance Motor using Non-Oriented Electrical Steels

  • Kartigeyan, J.;Ramaswamy, M.
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.93-99
    • /
    • 2017
  • The effort attempts to investigate the influence of various non-oriented electrical steel sheets on the core loss of a switched reluctance motor (SRM). The core loss of the motor inherits a strong correlation with flux density and permeability of the material. The study involves the use of laminated 2.7 % high silicon steel suitable for the motor in view of its higher flux density and lower core loss. The accurate prediction of core loss leaves way to suggest measures for improving the performance of the SRM. The dynamic simulation measurements of a 1.5 kW, three-phase 12/8 SRM involve the finite element method (FEM) and use the data obtained experimentally from Epstein frame. The closeness of the simulated and hardware results obtained with laminations of M400-50A, DI MAX-M19 and DI MAX-M15 both for the stator and rotor, espouse a greater significance to the findings in terms of the core loss density and forge new dimensions for its use in the drive industry.

A study on the abrasion resistance of punching carbide material of die for the application of SCP-1 material (SCP-1재료 적용을 위한 초경재료 펀치의 내마모성에 대한 연구)

  • Kim, Seung-Soo;Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.44-48
    • /
    • 2019
  • Motor core products are used as materials for electrical steel sheets and cold-rolled steel sheets according to the performance of motors. The cemented carbide material of the mold punch applied to the motor core material causes many troubles due to abrasion and burr problem. The selection of these materials has a great effect on the production life, mass production, product quality as well as mold life. The cemented carbide applied to the products of the motor core is recognized as a very important part. In this study, cold rolled steel sheet was applied to motor core SCP-1 steel 1.0mm, and The effects of abrasion and punching oil on the shear process were investigated for the selection of cemented carbide. Experiments were conducted to select and apply cemented carbide only for the motor core punch optimized for cold rolled steel. The results showed that the cemented carbide material of $CDK3^{***}$ produced the least wear and burrs.