• Title/Summary/Keyword: motor brake system

Search Result 104, Processing Time 0.027 seconds

THE BASIC DESIGN AND ANALYSIS OF UNMANNED VEHICLE FOR TH TELE-OPERATION CONTROL (원격주행을 위한 무인 자동차에 관한 기본설계와 성능분석에 관한 연구)

  • 심재흥;윤득선;김민석;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.139-139
    • /
    • 2000
  • The subject of this paper is the tole operation for unmanned vehicle. The aim is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. Modern, vehicle related researches have been implemented about control, chassis, body and safe쇼 but now is to driving comfort, I.T.S. and human factor, etc. As a result of this fact, unmanned vehicle is main research topic over the world but it is still very expensive and unreasonable. A hierarchical approach is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. The real time control and monitoring of longitudinal, lateral, Pitching motion is to be solved by system integration and optimization technique. We show the experimental result about fixed brake range test and acceleration test. And all system is to integrated for driving simulator and unmanned vehicle.

  • PDF

Brushed Servo-Motor Control System for Industrial Robot (산업용 로봇을 위한 직류 서보전동기 제어시스템)

  • Sun-Hag Hong
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • In this paper, brushed servo control system for industrial robot is realized under GUI environment. Brushed servo motor has 400W capacities, 1000ppr optic encoder and electric brake load. Especially, driving unit is composed of full-bridge MOSFET semiconductors with 9540 and 540 FET ICs. Control unit has PIC 16C74 microprocessor[l,2,3], RS-232 communication ports, URD current sensor, and GAL 16R8ACN. Servo control system is controlled by PID control method[5,8] with varying control parameters and load capacities. Brushed servo control systems which are proposed in this raper are applied to industrial robot control system.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-2 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-2)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2010
  • Currently, vector control is used for speed control of trains because induction motor has high performance is installed in Electric railroad systems. Also, control of the induction motor is possible through various methods by developing inverters and control theory. Presently, rolling stocks which use the induction motor are possible to brake trains by using AC motor. Therefore model of motor block and induction motor is needed to adapt various methods. There is Variable Voltage Variable Frequency (VVVF) as the control method of the induction motor. The torque and speed is controlled in the VVVF. The propulsion system model in the electric railroad has many sub-systems. So, the analysis of performance of the speed control is very complex. In this paper, simulation models are suggested by using Matlab/Simulink in the speed control characteristic. On the basis of the simulation models, the response to disturbance input is analyzed about the load. Also, the current, speed and flux control model are proposed to analyze the speed control characteristic in the train propulsion system.

Study of EMB System Using Wedge Structure (웨지 구조를 이용한 전기기계브레이크 시스템 연구)

  • Shin, Dong-Hwan;Kwon, Oh-Seok;Bae, Jun-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • According to the needs of change to hybrid, fuel cell and electric vehicle, and to the increasing demand for safety and eco-friendliness, the necessity of Electro-Mechanical Brake(EMB) is being increased. But, one of the most important problems for realizing EMB to the practical use is that the required motor power for braking is too high. So the high braking efficient EMB is required. In recent years, the Electronic Wedge Brake(EWB) is noticeable for the high braking efficiency. In this research, we examine the improvable matter of the recent published EWB, and we propose the improved mechanism and the cost effective control method using this mechanism. And we test these feasibility by experiment and discuss these meaning and effect.

A Study on Reducing Speed Control of Hydraulic Motor of Textiles Supply Rolling Equipment (섬유공급 롤링장치의 유압모터 감속도 제어에 관한 연구)

  • 이재구;김도태;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.62-67
    • /
    • 2001
  • The textiles supply rolling equipment is a part of inspection machine which inspect finished textiles and it check up textiles through rolling hydraulic equipment. This study suggests a method to select the capacity and initial gas pressure of accumulator to control reducing speed of the hydraulic motor to a desired degree. An accumulator in hydraulic systems is hydraulic machinery which stores kinetic energy of inertia body during braking. A series of computer simulations were done for the brake action and the selection method was based upon a trial and error approach. The results of the simulation work were compared with those of experiments and these results show that the proposed method can be applied effectively to control reducing speed of the hydraulic motor when braking action in textiles rolling system.

  • PDF

A Study on Manufacture and Control of a Self Manufacturing Hybrid Electric Vehicle (자작형 하이브리드카의 제작 및 제어에 관한 연구)

  • Kim, Hack-Sun;Jeong, Chan-Se;Yang, Soon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • In this paper, Hybrid Electric Vehicle is directly designed and manufactured for base study of HEV's system and Green Car. Foundation design consists of power train design and the frame design. The power train concept includes motor, engine, generator and battery. And the concept of the frame is the single-seat of this self-made HEV. A frame installed in hybrid system contains suspension, steering wheel, seat, accelerating pedal, brake pedal, clutch handle and various chassis parts with bearings. Electromagnetic clutch is equipped to transmit engine power to drive axle. The control algorism make using LabVIEW to control of an engine and a motor depending on drive condition. A parallel type hybrid system is manufactured to control operation of a motor and an engine depending on vehicle speed.

Analysis for Safety and Traffic Accident Case of ATV (All-Terrain Vehicle) (사륜 오토바이의 안전 및 교통사고 사례 분석)

  • Choi, Youngsoo;Yoon, Yongmoon;Park, Jongchan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2022
  • Recently, the use of ATV (All-Terrain Vehicle) has increased due to increase in leisure activities, and the awareness of safety and traffic accidents has improved, but it still insignificant compared to other transportation. Therefore, in this study, the current status and characteristics of traffic accidents related to ATVs were investigated, and actual ATV accident was analyzed. As a result, it was confirmed that the condition of the braking system directly connected to the safety of the ATV was not well maintained. For driver safety in the future, it is considered that it is necessary to strengthen safety regulations related to experience centers and rental companies handling AVTs and to conduct regular inspections in accordance with the Motor Vehicle Management Act.

DEVELOPMENT OF INVERTER AND POWER CAPACITORS FOR MILD HYBRID VEHICLE (MHV) - TOYOTA "CROWN"

  • Shida, Y.;Kanda, M.;Ohta, K.;Furuta, S.;Ishii, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • The 42V Mild Hybrid System has been released into market by Toyota for the first time in the world in 2001. The set-up employs an inverter unit to control the motor/generator (MG) electronically. The driving system called such as Toyota Mild Hybrid System (TMHS) has additional new functions to conventional internal combustion engines. When stopping vehicle, the engine stops promptly. When starting vehicle, by releasing the brake pedal MG starts the vehicle at the same time (EV-driving mode). When stepping on the accelerator pedal, or after a given period of time the engine firing occurs and the engine-driving mode starts. When running by motor, the power is supplied to the motor from 36V battery through the inverter. High outputs and instant responses are required for Inverter. At the same time, the compact volume is required to fit into the limited space of the engine room. The compact size and high output are also required to Power Capacitor used for this inverter. The power capacitors has been newly developed, shaped in "flat" type, suitably for the inverter. The points of developments on inverter and power capacitor are described in this paper.his paper.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.