• Title/Summary/Keyword: motor ability

Search Result 529, Processing Time 0.021 seconds

Improvement of Steady State Response Using PI+Double Integral Controller (비례적분+이중적분 제어기를 이용한 정상상태 응답 개선)

  • Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

A Study on the Correlation between Static, Dynamic Standing Balance Symmetry and Walking Function in Stroke (뇌졸중 환자의 정적, 동적 선자세 균형 대칭성과 보행 기능의 상관관계 연구)

  • Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.73-81
    • /
    • 2012
  • Purpose: The aim of the present study was to measure the standing balance symmetry of stroke patients using a force-plate with computer system, and to investigate the correlation between the standing balance symmetry and that of the walking function in stroke patients. Methods: 48 patients with stroke (34 men, 14 women, $56.8{\pm}11.72$ years old) participated in this study. Static standing balance was evaluated by the weight distribution on the affected and the nonaffected lower limbs, sway path, sway velocity, and sway frequency, which reflected the characteristic of body sway in quiet standing. Dynamic standing balance was evaluated by anteroposterior and mediolateral sway angle, which revealed the limit of stability during voluntary weight displacement. Symmetry index of static standing balance, (SI-SSB) calculated by the ratio of the affected weight distribution for the nonaffected weight distribution, and symmetric index of dynamic standing balance (SI-SDB) by the ratio of the affected sway angle for the nonaffected sway angle. Functional balance assessed by a Berg balance scale (BBS), and the functional walking by 10m walking velocity, as well as the modified motor assessment scale (mMAS). Results: Static balance scales and SI-SSB was the only correlation with BBS (p<0.05). Dynamic balance scales and SI-DSB, not only was correlated with BBS, but also with 10m walking velocity and mMAS (p<0.01). Additionally, there was a significant difference between SI-SSB and that of SI-DSB (p<0.01). Conclusion: The balance and the walking function relate to real life in the stroke showed strong relationships with the dynamic standing balance symmetry in the frontal plane and the ability of anterior voluntary weight displacement in sagittal plane.

Gait Characteristic in a Stroke Patient with an Intact Corticospinal Tract and Corticoreticular Pathway: A Case Study

  • Yeo, Sang Seok;Cho, In Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.73-77
    • /
    • 2018
  • Purpose: The prefrontal lobe, supplementary motor area, cerebellum, and basal ganglia are activated during gait. In addition, gait is controlled by nerves, such as the corticospinal tract (CST) and corticoreticular pathway (CRP). In this study, the presence of an injury to the CST and CRP was identified by diffusion tensor imaging and the characteristics of the gait pattern were investigated according to inferior cerebral artery infarction. Methods: One patient and six control subjects of a similar age participated. A 69-year-old female patient had an injury to the left basal ganglia, insular gyrus, corona radiata, dorsolateral prefrontal cortex, and postcentral gyrus due to an inferior cerebral artery infarction. Diffusion tensor imaging (DTI) data was acquired 4 weeks after the stroke. The kinematic and spatio-temporal parameters of gait were collected using a three-dimensional gait analysis system. Results: On 4 weeks DTI, the CST and CRP in the affected hemisphere did not show injury to the affected and unaffected hemisphere. Gait analysis showed that the cadence of spatio-temporal parameter was decreased significantly in the patient. The angle of the knee joint was decreased significantly in the affected and unaffected sides compared to the control group. Conclusion: The results of diffusion tensor imaging showed that although the patient was evaluated to be capable of an independent gait, the quality and quantity of gait might be reduced. This study could help better understand the gait ability analysis of stroke patients and the abnormal gait pattern of patients with a brain injury.

Application of Rasch Analysis to the Korean Version of the Pediatric Balance Scale in Children With Cerebral Palsy (뇌성마비 아동을 대상으로 실시한 한국어판 아동 균형 척도의 라쉬분석)

  • Kim, Gyoung-mo
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2017
  • Background: The Pediatric Balance Scale (PBS) was developed to assess of balance ability in children with balance problem. The PBS was translated into Korean and its reliability had been studied. However, it had need to be verified using psychometric characteristics including item fit and rating scale. Objects: The purpose of this study was to investigate the item fit, item difficulty, and rating scale of the Korean version of PBS using Rasch analysis. Methods: In total, 40 children with cerebral palsy (CP) (boy=17, girl=23) who were diagnosed with level 1 or 2 according to the Gross Motor Function Classification System participated in this study. The PBS was performed, and was verified regarding the item fit, item difficulty, rating scale, and separation index and reliability using Rasch analysis. Results: In this study, the 'transfer', and 'turning to look behind left and right shoulders while standing still' item showed misfit statistics. in total 40 children with CP. Also, 'transfer', 'standing unsupported with feet together' and 'standing with one foot in front' items showed misfit statistics in diplegia CP group. Regardless of the classification of CP, the most difficult item was 'standing on one foot', whereas the easiest item was 'sitting with back unsupported and feet supported on the floor'. The 4 rating scale categories of PBS were acceptable with all criteria. Both item and person separation indices and reliability showed acceptable values. Conclusion: The PBS has been proven reliable, valid and is an appropriate tool, but it needs to modify the items of PBS according to CP classification.

The Study on Minimum Smoke Propellant to Reduce Afterburning Reaction (후연소 반응이 감소된 무연계 고체 추진제에 관한 연구)

  • Yim, Yoojin;Lee, Jongseop;Park, Euiyong;Choi, Sunghan;Yoo, Jichang;Cho, Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-17
    • /
    • 2013
  • This paper describes a study on after-burning suppressant in a solid propellant to reduce the plume formed outside of rocket nozzles, which could expose the launch site and the flight track. The minimum smoke propellant to enhance the stealth ability was formulated in terms of the kinds and the effects of after-burning suppressant on the ballistic performance and the amount of primary smoke. A after-burning suppressant, $K_2SO_4$ of about 1.1% weight content was found to show profound reduction of the rocket plume, giving negligibly slight increase in pressure exponent of burning rate. Also minimum smoke propellant with less than 1.1% of $K_2SO_4$ corresponds to A-class satisfaction in primary smoke by AGARD standard.

An Analysis of Recognitions of Elementary School Students on Useful Classes among School Sport Clubs for Program Development using the IPA Method (IPA매트릭스를 이용한 초등학생의 학교스포츠클럽 유익한 수업 인식을 위한 프로그램 개발 분석)

  • MUN, Sun-Ho;KIM, Nam-Young;KWON, Il-Kwon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1147-1159
    • /
    • 2015
  • The purpose of this study was to verify the analysis of level of importance and satisfaction in recognitions of elementary school students on useful classes among school sport clubs using Importance-Performance analysis. In order to achieve this objective, samples were taken by using convenience sampling method among non-probability sampling methods, and 384 data were used as the final valid samples for this study except 16 data with missing items or insincere responses. The results of frequency analysis, exploratory factor analysis, independent samples t-test, IPA analysis by using SPSS 20.0 were as follows. First, Iquadrant included education contents of enhance ability to ingenuity, teaching method of provides option, teaching method of encourage participation activity, education contents of the aspect of fun, evaluation of motor function and emotion, education contents of explains key contents easily, and education contents of understanding overall context. II quadrant included education environment of good sport facility, class environment of fair opportunity for activity, class atmosphere of arouses interest, and class atmosphere of autonomous and voluntary. III quadrant included diverse teaching method and instructor's demonstration, class atmosphere of systematic learning, evaluation of fairness, objectivity, and credibility, and an atmosphere that can exercise. IV quadrant included education contents of enable acquisition of knowledge and degree of improvement into consideration, and class atmosphere of trust and respect between instructor and student.

The Effects of Arithmetic Task Difficulty level as a Dual Task on the Gait in Post-stroke Patient (뇌졸중 환자에서 이중 과제로서의 산술 과제 난이도가 보행에 미치는 영향)

  • Kim, Min-Suk;Goo, Bong-Oh
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • Many daily activities require people to complete a motor task while walking. Substantial gait decrements during simultaneous attention to a variety of cognitive tasks have been shown by a group of severely injured neurological patients of mixed etiology. And previous studies have shown that the attentional load of a walking-associated task increased with its level of difficulty. The purpose of this study was to analyze subjects' gait changes are affected by the effects of arithmetic task difficulty and performance level. Participants performed a walking task alone, three different Arithmetic tasks while seated, and among them, two kinds of the simillar Arithmetic tasks in combination with walking. Reaction time and accuracy were recorded for two of the Arithmetic tasks. The mean values of the gait were measured using a Timed Up and Go test among 11 with post-stroke patients while walking with and without forward counting (WFC) and backward counting(WBC).There was significant Arithmetic Task Difficulty level between the 10-forward counting task condition(FC) and the 10-backward counting task condition(BC)(p=0.008). The mean values of T.U.G time were significantly higher under backward counting dual-task condition than during a simple walking task(p=0.009) and WFC(p=0.009). The change in T.U.G time during WFC was higher when compared with the change during a simple walking, but there was no significant difference (p=0.246). This study suggesting that a high interference could be linked with a high level of difficulty, whereas adaptive task enabled participants to perfectly share their attention between two concurrent tasks. Future research should determine whether dual task training can reduce gait decrements in dual task situations in people after stroke. And the dual-task-based exercise program is feasible and beneficial for improving walking ability in subjects with stroke.

  • PDF

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure (복합 링크 구조 기반의 가변형 구형로봇 설계)

  • Kang, Hyeongseok;Joe, Seonggun;Lee, Dongkyu;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.26-33
    • /
    • 2017
  • We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

Effects of Differential Stability on Control of Multi-Joint Coordination in the Upper Extremity: A Torque Component Analysis

  • Ryu, Young Uk;Shin, Hwa Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Purpose: The purpose of the present current study was to examine control of upper limb multi-joint movements with differential coordination stability. To achieve the goals of the study, torque analyses were utilized to answer questions about how torque components were differed among various elbow-wrist coordination patterns. Methods: Eight self-reported right-handed college students (3 males and 5 females, mean age=20.6 yr) were volunteered. The task required participants to rhythmically coordinate the flexion-extension motions of their elbow and wrist with coordination relationship of $0^{\circ}$, $90^{\circ}$, and $180^{\circ}$relative phases between the two joints. Mean relative phase and phase stability (standard deviation of relative phase) were computed to for analysisze of overall coordination performance. To determine the figure out characteristics of torque components in elbow and wrist joints, impulse values of muscle torque (MT) and interactive torque (IT) and MT as a percentage of cycle duration (MT-PCD) were analyzed. Results: Torque results showed that the proximal elbow joint generated motions with mainly muscle efforts regardless of coordination patterns, while the distal wrist joint adjusted the coordination patterns by changing amount of MT. Impulse analyses showed that the least stable $90^{\circ}$ pattern was performed by utilizing a similar coordination strategy of the most stable $0^{\circ}$ pattern. Conclusion: The present current study suggests that the roles of distal and proximal joints differ in order to achieve various multi-joint coordination movements. This study provides information for use in gives an idea to development of rehabilitation or training programs for to persons with an impaired upper limb motor ability.