• Title/Summary/Keyword: motion-tracking

Search Result 1,225, Processing Time 0.03 seconds

Motion Management and Image-Guided Technique in Photon Radiation Therapy: A Review of an Advanced Technology

  • Jin Jegal;Hyojun Park;Seonghee Kang;Chang Heon Choi;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.35 no.2
    • /
    • pp.21-35
    • /
    • 2024
  • Herein, we provide a concise review of the critical role of motion management in radiation therapy, with a focus on photon radiation therapy, real-time control of respiratory motion, and image-guided radiation therapy (IGRT) in lung stereotactic body radiation therapy (SBRT). The dynamic nature of human anatomy, particularly in regions prone to movement such as the thoracic and abdominal areas, poses significant challenges in accurately targeting tumors during radiation therapy. This review explores the implications of organ and tumor motion, emphasizing the necessity for precise treatment delivery. We assess the advancements in four-dimensional (4D) imaging techniques such as 4D computed tomography, which provide time-resolved images for enhanced treatment planning. The review highlights various motion management strategies, including motion-encompassing methods, respiratory-gating, breath-hold techniques, and real-time tumor tracking, discussing their implementation and impact on treatment efficacy. The role of IGRT in lung SBRT is particularly emphasized, showcasing how real-time imaging and advanced targeting techniques enhance the precision of high-dose radiation delivery while minimizing exposure to surrounding healthy tissues. This comprehensive review aims to underscore the significance of integrating motion management in radiation therapy, highlighting its pivotal role in improving treatment accuracy, reducing toxicity, and ultimately enhancing patient outcomes in cancer care.

Stereo Object Tracking and Multiview image Reconstruction System Using Disparity Motion Vector (시차 움직임 벡터에 기반한 스데레오 물체추적 및 다시점 영상복원 시스템)

  • Ko Jung-Hwan;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.166-174
    • /
    • 2006
  • In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Being based on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having 256$\times$256 pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05$\%$ on average between the detected and actual location coordinates of the target object.

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

Characteristics of Summer Season Precipitation Motion over Jeju Island Region Using Variational Echo Tracking (변분에코추적법을 이용한 제주도 지역 여름철 강수계의 이동 특성 분석)

  • Kim, Kwonil;Lee, Ho-Woo;Jung, Sung-Hwa;Lyu, Geunsu;Lee, GyuWon
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.443-455
    • /
    • 2018
  • Nowcasting algorithms using weather radar data are mostly based on extrapolating the radar echoes. We estimate the echo motion vectors that are used to extrapolate the echo properly. Therefore, understanding the general characteristics of these motion vectors is important to improve the performance of nowcasting. General characteristics of radar-based motions are analyzed for warm season precipitation over Jeju region. Three-year summer season data (June~August, 2011~2013) from two radars (GSN, SSP) in Jeju are used to obtain echo motion vectors that are retrieved by Variational Echo Tracking (VET) method which is widely used in nowcasting. The highest frequency occurs in precipitation motion toward east-northeast with the speed of $15{\sim}16m\;s^{-1}$ during the warm season. Precipitation system moves faster and eastward in June-July while it moves slower and northeastward in August. The maximum frequency of speed appears in $10{\sim}20m\;s^{-1}$ and $5{\sim}10m\;s^{-1}$ in June~July and August respectively while average speed is about $14{\sim}15m\;s^{-1}$ in June~July and $8m\;s^{-1}$ in August. In addition, the direction of precipitation motion is highly variable in time in August. The speed of motion in Lee side of the island is smaller than that of the windward side.

Direction-Based Modified Particle Filter for Vehicle Tracking

  • Yildirim, Mustafa Eren;Ince, Ibrahim Furkan;Salman, Yucel Batu;Song, Jong Kwan;Park, Jang Sik;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.356-365
    • /
    • 2016
  • This research proposes a modified particle filter to increase the accuracy of vehicle tracking in a noisy and occluded medium. In our proposed method for vehicle tracking, the direction angle of a target vehicle is calculated. The angular difference between the motion direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted depending on their angular distance to the motion direction. Those particles moving in a direction similar to that of the target vehicle are assigned larger weights; this, in turn, increases their probability in a given likelihood function (part of the process of estimation of a target's state parameters). The proposed method is compared against a condensation algorithm. Our results show that the proposed method improves the stability of a particle filter tracker and decreases the particle consumption.

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

A Study on Performance Improvement of Target Motion Analysis using Target Elevation Tracking and Fusion in Conformal Array Sonar (컨포멀 소나에서의 표적고각 추적 및 융합을 이용한 표적기동분석 성능향상 연구)

  • Lee, HaeHo;Park, GyuTae;Shin, KeeCheol;Cho, SungIl
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.320-331
    • /
    • 2019
  • In this paper, we propose a method of TMA(Target Motion Analysis) performance improvement using target elevation tracking and fusion in conformal array sonar. One of the most important characteristics of conformal array sonar is to detect a target elevation by a vertical beam. It is possible to get a target range to maximize advantages of the proposed TMA technology using this characteristic. And the proposed techniques include target tracking, target fusion, calculation of target range by multipath as well as TMA. A simulation study demonstrates the outstanding performance of proposed techniques.

Real-time 3D multi-pedestrian detection and tracking using 3D LiDAR point cloud for mobile robot

  • Ki-In Na;Byungjae Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.836-846
    • /
    • 2023
  • Mobile robots are used in modern life; however, object recognition is still insufficient to realize robot navigation in crowded environments. Mobile robots must rapidly and accurately recognize the movements and shapes of pedestrians to navigate safely in pedestrian-rich spaces. This study proposes real-time, accurate, three-dimensional (3D) multi-pedestrian detection and tracking using a 3D light detection and ranging (LiDAR) point cloud in crowded environments. The pedestrian detection quickly segments a sparse 3D point cloud into individual pedestrians using a lightweight convolutional autoencoder and connected-component algorithm. The multi-pedestrian tracking identifies the same pedestrians considering motion and appearance cues in continuing frames. In addition, it estimates pedestrians' dynamic movements with various patterns by adaptively mixing heterogeneous motion models. We evaluate the computational speed and accuracy of each module using the KITTI dataset. We demonstrate that our integrated system, which rapidly and accurately recognizes pedestrian movement and appearance using a sparse 3D LiDAR, is applicable for robot navigation in crowded spaces.

Motion Characteristic Capturing : Example Guided Inverse Kinematics (동작 특성 추출 : 동작 모방에 기초한 향상된 역 운동학)

  • 탁세윤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.147-151
    • /
    • 1999
  • This paper extends and enhances the existing inverse kinematics technique using the concept of motion characteristic capturing. Motion characteristic capturing is not about measuring motion by tracking body points. Instead, it starts from pre-measured motion data, extracts the motion characteristics, and applies them in animating other bodies. The resulting motion resembles the originally measured one in spite of arbitrary dimensional differences between the bodies. Motion characteristics capturing is a new principle in kinematic motion generalization to process measurements and generate realistic animation of human being or other living creatures.

  • PDF

Motion Analysis of a Moving Object using one Camera and Tracking Method (단일 카메라와 Tracking 기법을 이용한 이동 물체의 모션 분석)

  • Shin, Myong-Jun;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2821-2823
    • /
    • 2005
  • When we deal with the image data through camera lens, much works are necessary for removing image distortions and obtaining accurate informations from the raw data. However, the calibration process is very complicated and requires many trials and errors. In this paper, 3 new approach to image processing is presented by developing a H/W vision system with a tracking camera. Using motor control with encoders the proposed tracking method tells us exact displacements of a moving object. Therefore this method does not require any calibration process for pin cusion. Owing to the mobility one camera covers wide ranges and, by lowering its height, the camera also obtains high resolution of the image. We first introduce the structure of the motion analysis system. Then the construced vision system is investigated by some experiments.

  • PDF