• Title/Summary/Keyword: motion transformation

Search Result 345, Processing Time 0.027 seconds

A Study on the Errors in the Free-Gyro Positioning and Directional System (자유자이로 위치 및 방위시스템의 오차에 관한 연구)

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • This paper is to develop the position error equations including the attitude errors, the errors of nadir and ship's heading, and the errors of ship's position in the free-gyro positioning and directional system. In doing so, the determination of ship's position by two free gyro vectors was discussed and the algorithmic design of the free-gyro positioning and directional system was introduced briefly. Next, the errors of transformation matrices of the gyro and body frames, i.e. attitude errors, were examined and the attitude equations were also derived. The perturbations of the errors of the nadir angle including ship's heading were investigated in each stage from the sensor of rate of motion of the spin axis to the nadir angle obtained. Finally, the perturbation error equations of ship's position used the nadir angles were derived in the form of a linear error model and the concept of FDOP was also suggested by using covariance of position error.

Improved image alignment algorithm based on projective invariant for aerial video stabilization

  • Yi, Meng;Guo, Bao-Long;Yan, Chun-Man
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3177-3195
    • /
    • 2014
  • In many moving object detection problems of an aerial video, accurate and robust stabilization is of critical importance. In this paper, a novel accurate image alignment algorithm for aerial electronic image stabilization (EIS) is described. The feature points are first selected using optimal derivative filters based Harris detector, which can improve differentiation accuracy and obtain the precise coordinates of feature points. Then we choose the Delaunay Triangulation edges to find the matching pairs between feature points in overlapping images. The most "useful" matching points that belong to the background are used to find the global transformation parameters using the projective invariant. Finally, intentional motion of the camera is accumulated for correction by Sage-Husa adaptive filtering. Experiment results illustrate that the proposed algorithm is applied to the aerial captured video sequences with various dynamic scenes for performance demonstrations.

The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation

  • Sharif, Humaira;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Hussain, Muzamal;Mahmoud, S.R.;Al-Basyouni, K.S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.437-448
    • /
    • 2021
  • In this article, an analytically and numerically 3D nanoliquid flow by a porous rotatable disk is presented in the presence of gyrotactic microorganisms. The mathematical model in the form of partial differential system is transmuted into dimensionless form by utilizing the appropriate transformation. The homotopy analysis approach is applied to attain the analytic solution of the problem. The effect of promising parameters on velocity distribution, temperature profile, nanoparticles volume fraction and motile microorganism distribution field are evaluated through graphs and in tabular form. The existence of Brownian motion and thermophoresis impacts are more proficient for heat transfer enhancement. Further the unique features like heat absorption/generation and energy activation are also examined for the present flow problem. The obtained results are compared with the earliear investigation to check the accuracy of present model.

Use of rotating disk for Darcy-Forchheimer flow of nanofluid; Similarity transformation through porous media

  • Hussain, Muzamal;Sharif, Humaira;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The basic purpose of the current study is to compute the numerical analysis of heat source/sink for Darcy-Forchheimer three dimensional nanofluid flow with gyrotactic microorganism by rotatable disk via porous media under the slip conditions. Due to nanoparticles, random and thermophoretic motion phenomenon occurs. The governing mathematical model is handled numerically by shooting method. Additionally, the characteristics of velocities, mass, heat, motile microorganisms and associated parameters are thoroughly analyzed via plots and tables. Different physical parameters like Forchheimer number, slip parameters like velocity, porosity parameter, Prandtl number, Brownian number, thermophoresis parameter, heat sink/source parameter, bioconvected Rayleigh number, buoyancy parameteron dimensionless velocities, temperature. Approximate values of Sherwood microorganism are analyzed.

Web System providing Super slow Motion Video Transformation (초저속 비디오 변환 서비스를 제공하는 웹 시스템)

  • Gim, Donggeon;Kim, Dohyeon;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.322-324
    • /
    • 2021
  • 최근 고주사율 디스플레이 시장 확대와 실감콘텐츠에 대한 요구에 따라, 높은 프레임율의 동영상 콘텐츠에 대한 관심이 증가하고 있다. 본 논문은 이용자의 비디오를 초슬로우 비디오로 변환해주는 웹 기반 서비스 시스템을 제안한다. 이는 사용자가 웹을 통해 비디오를 업로드하면, 딥러닝 기반의 비디오 프레임 보간 알고리즘을 이용하여 초고프레임율의 동영상으로 변환하며. 변환된 초저속 비디오를 웹을 통해 보여주거나 파일 포맷으로 제공한다. 제안 시스템은 복잡한 연산을 요구하는 딥러닝 네트워크 모듈과 사용자와의 상호작용을 위한 웹 페이지 모듈로 구성되었다. 프레임 보간을 위해서, State-of-the-art 기술인 딥러닝 기반의 Real-Time Intermediate Flow Estimation for Video Frame Interpolation 방법이 활용되었으며, 웹페이지는 HTML, CSS, Javascript, Flask를 사용하여 구축되었고, Flask를 활용하여 두 모듈이 연동되었다. 제안 웹 기반 시스템을 통해, 사용자는 딥러닝 네트워크 구동에 필요한 별도의 지식 없이 통신 자원만으로 고실감의 경험과 편의성을 제공받을 수 있다.

  • PDF

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun;Omer Civalek;M. Ozgur Yayli
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.175-186
    • /
    • 2024
  • Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

Cancellation of Motion Artifact in MRI (MRI에 있어서 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • In this study, a new method for canceling MRI artifacts through the motion translation of image plane is presented Breathing often makes problems in a clinical diagnosis. Assuming that the head moves up and down due to breathing, rigid translational motions in only y(phase encoding axis) direction are treated Unlike the conventional Iterative phase retrieval algorithm, this method is based on the MRI imaging process and analyzing of Image property A new constraint condition with which the motion component and the true image component in the MRI signal can be separated by a simple algebraic operation is extracted After the x(read out) directional Fourier transformation of MRI signal is done, the y(phase encoding) directional spectrum phasing value is Just an algebraic sum of the Image component and the motion component Meanwhile, as It is known that the density of subcutaneous fat area is almost uniform in the head tomographs, the density distribution along a y directional line on this fat area is regarded as symmetric shape If the density function is symmetric, then the phase of spectrum changes linearly with the position Hence, the departure component from the linear function can be separated as the motion component Based on this constrant condition, the new method of artifact cancellation is presented Finally, the effectiveness of this algorithm IS shown by using a phantom with simulated motions.

  • PDF

Study on Shape Design Method of Cycloidal Plate Gear (사이크로이드 판기어의 형상설계법에 관한 연구)

  • Sin, Jung-Ho;Yun, Ho-Eop;Gang, Dong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.70-80
    • /
    • 2001
  • A cycloid reducer is one of the rotational velocity reduction equipments of machinery. It has advantages of the higher reduction ratio, the higher accuracy, the easier adjustment of transmission ratio and the smaller workspace than other kinds of reducer. A cycloidal plate gear is a main part of the cycloid reducer. Its tooth shape is peculiar because of gearing with the roller gear that has the several rollers on the circular line. And then it can be designed to contact all teeth to rollers. So, the cycloid reducer has the good characteristics in the dynamic properties and the zero-backlash in the contact motion. It can be used in robots, high-precision machines and high capacity machinery. This paper proposes a new approach for the shape design of the cycloidal plate gear and presents a Computer-Aided-Design program developed by the proposed method. The first part of this paper defines the two types of the cycloid reducers and explains their mechanisms. The second part defines the instant velocity centers for each type of the cycloid reducers and calculates the contact angles and the contact points by using te geometric relationships and the kinematical properties of the reducers. The third part generates the full shape of the cycloidal plate gear by the coordinate transformation technique. Finally, this paper presents two examples for the shape design of the cycloidal plate gear in order to prove the theory of the proposed method in this paper and the accuracy of the \"CycloGear Designer\".

A Comparative Study of Optimal Stretch Intensity For Flexibility of Hamstrings; Hand Held Dynamometer and Verbal Rating Scale

  • Choi, Bong-sam
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.38-45
    • /
    • 2017
  • Background: To improve muscle flexibility, static stretch is the most common type and is considered safe and effective for improving overall flexibility of muscles. During the stretch, the intensity is more likely to be determined by the degree of an athlete's pain and practitioner's skills rather than quantitative measures of stretch. It is necessary to determine the optimal intensity for the stretch. Objects: The purpose of this study is to explore the relationship between hand held dynamometer (HHD) and verbal rating scale (VRS) in comparison of the effects of continuance time on active (walking) and inactive (sitting) movement after static stretch. Methods: A cross-sectional study was conducted with a sample (n=62) recruited from a university. Participants were randomly assigned to 2 different groups (n=31 for each group) based on participants' positions either remaining in sitting or freely walking around for a series of re-assessments. Data was collected at pre-warm up, pre-stretch, post-stretch, and additional assessments at the time of 3, 6, 9, 12, 15, 20 and 30 minutes after the stretch. Results: Relationship between VRS and HHD scores represents very weak correlation (Spearman's p=-.16, p>.05). Pearson's correlation analysis was conducted following the logarithmic transformation of the two scores. Pearson's correlation after the transformation still showed a very low relationship and a poor linear relationship between the two scores (Pearson's r=-.18, p>.05). Conclusion: The optimal intensity for stretch cannot be solely determined by the subjective pain perception. The objective measurement such as HHD could be used in conjunction with the pain perception.

A study on Power Quality Recognition System using Wavelet Transformation and Neural Networks (웨이블릿 변환과 신경회로망을 이용한 전력 품질 인식 시스템에 관한 연구)

  • Chong, Won-Yong;Gwon, Jin-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • Nonstationary power quality(PQ) signals which the Sag, Swell, Impulsive Transients, and Harmonics make sometimes the operations of the industrial power electronics equipment, speed and motion controller, plant process control systems in the undesired environments. So, this PQ problem might be critical issues between power suppliers and consumers. Therefore, We have studied the PQ recognition system in order to acquire, analyze, and recognize the PQ signals using the software, i.e, MATLAB, Simulink, and CCS, and the hardware. i.e., TMS320C6713DSK(TI), The algorithms of the PQ recognition system in the Wavelet transforms and Backpropagation algorithms of the neural networks. Also, in order to verify the real-time performances of the PQ recognition system under the environments of software and hardware systems, SIL(Software In the Loop) and PIL(Processor In the Loop) were carried out, resulting in the excellent recognition performances of average 99%.