DOI QR코드

DOI QR Code

Use of rotating disk for Darcy-Forchheimer flow of nanofluid; Similarity transformation through porous media

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Sharif, Humaira (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed Amine (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Banoqitah, Essam Mohammed (Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Loukil, Hassen (Department of Electrical Engineering, College of Engineering, King Khalid University) ;
  • Ali, Imam (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Mahmoud, S.R. (GRC Department, Applied College, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (FL (Yonsei Frontier Lab.), Yonsei University)
  • Received : 2021.06.20
  • Accepted : 2022.06.07
  • Published : 2022.07.25

Abstract

The basic purpose of the current study is to compute the numerical analysis of heat source/sink for Darcy-Forchheimer three dimensional nanofluid flow with gyrotactic microorganism by rotatable disk via porous media under the slip conditions. Due to nanoparticles, random and thermophoretic motion phenomenon occurs. The governing mathematical model is handled numerically by shooting method. Additionally, the characteristics of velocities, mass, heat, motile microorganisms and associated parameters are thoroughly analyzed via plots and tables. Different physical parameters like Forchheimer number, slip parameters like velocity, porosity parameter, Prandtl number, Brownian number, thermophoresis parameter, heat sink/source parameter, bioconvected Rayleigh number, buoyancy parameteron dimensionless velocities, temperature. Approximate values of Sherwood microorganism are analyzed.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number (RGP.2/155/43).

References

  1. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
  2. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  3. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  4. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009.
  5. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  6. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039.
  7. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
  8. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
  9. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
  10. Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0.
  11. Ali, A., Al-Sulaiman, F.A., Al-Duais, I.N., Irshad, K., Malik, M.Z., Shafiullah, M., … & Malik, S.A. (2021), "Renewable portfolio standard development assessment in the Kingdom of Saudi Arabia from the perspective of policy networks theory", Proc., 9(7), 1123. https://doi.org/10.3390/pr9071123.
  12. Alkanhal, T. A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transf., 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006.
  13. Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection peclet number effects", Am. J. Mech. Indus. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11.
  14. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
  15. Choi, S.U. and Eastman, J.A. (1995). "Enhancing thermal conductivity of fluids with nanoparticles", No. ANL/MSD/CP-84938; CONF-951135-29, Argonne National Lab., IL, USA.
  16. Faizan, M., Ahmed, R. and Ali, H.M. (2021), "A critical review on thermophysical and electrochemical properties of Ionanofluids (nanoparticles dispersed in ionic liquids) and their applications", J. Taiwan Inst. Chem. Eng., 124, 391-423. https://doi.org/10.1016/j.jtice.2021.02.004.
  17. Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with nonuniform heat source/ sink", Int. J. Indus. Math., 7(3), 247-260.
  18. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  19. Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., … & Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130.
  20. Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlin. Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034.
  21. Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluid., 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016.
  22. Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Therm. Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3.
  23. Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Adv., 9(8), 085026. https://doi.org/10.1063/1.5113688.
  24. Jeong, J.S. and Lee, S.W. (2021), "Repetitive tip convective transport and its flow physics in a large-scale turbine cascade", Int. Commun. Heat Mass Transf., 126, 105346. https://doi.org/10.1016/j.icheatmasstransfer.2021.105346.
  25. Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Math. Model., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056.
  26. Khan, A., Ali, H. M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O-ethylene glycol mixture", J. Therm. Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7.
  27. Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
  28. Kumaran, V. and Ramanaiah, G. (1996), "A note on the flow over a stretching sheet", Acta Mechanica, 116(1), 229-233. https://doi.org/10.35940/ijrte.c4861.098319.
  29. Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Therm. Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
  30. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  31. Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and microchannels", Int. J. Heat Mass Transf., 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086.
  32. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  33. Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710.
  34. Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Therm. Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015.
  35. Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transf., 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049.
  36. Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Therm. Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2.
  37. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  38. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  39. Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transf., 135(4). https://doi.org/10.1115/1.4023038.
  40. Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", AIP Adv., 5(2), 027106. https://doi.org/10.1063/1.4907927.
  41. Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9.
  42. Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Therm. Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4.
  43. Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity", J. Therm. Anal. Calorim., 140(3), 1121-1145. https://doi.org/10.1007/s10973-019-08841-1.
  44. Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0.
  45. Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Therm. Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4.
  46. Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", J. Phys.: Conf. Ser., 1366(1), 012007. https://doi.org/10.1088/1742-6596/1366/1/012007.
  47. Saleem, M., Algahtani, A., Rehman, S.U., Javed, M.S., Irshad, K., Ali, H.M., … & Islam, S. (2021), "Solution processed Zn1- x- ySmxCuyO nanorod arrays for dye sensitized solar cells", Nanomater., 11(7), 1710. https://doi.org/10.3390/nano11071710.
  48. Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
  49. Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R., Shafee, A. and Li, Z. (2019), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H23O nanofluid through a channel", Comput. Meth. Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025.
  50. Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molec. Liquid., 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104.
  51. Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transf., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076.
  52. Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., … & Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: +ptimising the annealing conditions for obtaining WO3 nanofibers", J. Therm. Anal. Calorim., 105(1), 73-81. https://doi.org/10.1007/s10973-011-1631-5.
  53. Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Proc., 7(5), 262. https://doi.org/10.3390/pr7050262.
  54. Williamson, R.V. (1929), "The flow of pseudoplastic materials", Indus. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie5023.
  55. Zamani, A., Kolahchi, R.,and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.