• Title/Summary/Keyword: motion trajectory

Search Result 679, Processing Time 0.03 seconds

피드백 오차 학습법을 이용한 궤적추종제어

  • 성형수;이호걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.466-471
    • /
    • 1994
  • To make a dynamic system a given desired motion trajectory, a new feedback error learning scheme is proposed which is based on the repeatability of dynamic system motion. This method is composed of feedforward and feedback control laws. A benefit of this control scheme is that the input pattern that generates the desired motion can be formed without estimating the physical parameters of system dynamics. The numerical simulations show the good performance of the proposed scheme

  • PDF

On-line Trajectory Optimization Based on Automatic Time Warping (자동 타임 워핑에 기반한 온라인 궤적 최적화)

  • Han, Daseong;Noh, Junyong;Shin, Joseph S.
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

A study on an efficient combination of the manual mode according to trajectory planning (궤도계획에 의한 수동모드의 효율적 배합에 관한 연구)

  • ;長町三生;伊藤宏司
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 1987
  • The paesent paper deals with obtaining the properly mixed application critaeia for the manual mode, using computer graphic simulation, in order to recover the error effectively occurring in the advanced teleoperator work of man-robot system. In these experiments the error which is occurred during performing the automatic mode is recovered by the manual mode which is combined properly the operation by hyman with the operation by control program. The result shows an improvement availibility of the system by not only establishing an efficient combination of the manual mode according to trajectory planning but also recovering the error effectively. Therefore we suggest that the operation by control program should be applied in macro motion of control and the operation by human in micro motion of control.

  • PDF

Adaptability Improvement of Learning from Demonstration with Particle Swarm Optimization for Motion Planning (운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상)

  • Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.167-175
    • /
    • 2016
  • We present a method for improving adaptability of Learning from Demonstration (LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A trajectory generated from an LfD is modified with PSO by minimizing a fitness function that considers constraints. Finally, the final trajectory is suitable for a task and adapted for constraints. The effectiveness of the method is shown with a target reaching task with a manipulator in three-dimensional space.

Airplanes at constant speeds on inclined circular trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.399-425
    • /
    • 2016
  • The dynamical requirements are obtained for airplanes to travel on inclined circular trajectories. Formulas are provided for determining the load factor, the bank angle, the lift coefficient and the thrust or power required for the motion. The dynamical properties of the airplane are taken into account, for both, airplanes with internal combustion engines and propellers, and airplanes with jet engines. A procedure is presented for the construction of tables from which the flyability of trajectories at a given angle of inclination can be read, together with the corresponding minimum and maximum radii allowed. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and a F-16 jet airplane.

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

Trajectory generation method for bipedal walking on the stairs (두발 로봇의 계단 보행궤적 생성방법)

  • Park, Chan-Soo;Choi, Chong-Ho;Ha, Tae-Sin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.172-174
    • /
    • 2006
  • In this paper, we propose the trajectory generation method for bipedal walking on the stairs. This method is based on multi-masses inverted pendulum mode (MMIPM). MMIPM can effectively reduce the ZMP error but it is only applied to walking on the flat ground. In order to reduce ZMP error when a robot walks on the stairs, we generate the walking motion by MMIPM and modify that motion using parametric functions. We determine the values of the parameters by the simulations. Simulation results show that the robot can walk more stable on the stairs.

  • PDF

A hierachical control structure of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

Dynamic Walking of a Biped Robot

  • Ma, Ling;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.138-140
    • /
    • 2004
  • This paper mainly deals with the dynamic walking of a biped robot. At first, in order to walk in various environments, it is desirable to adapt to such ground conditions with a suitable foot motion, and maintain the stability of the robot by a smooth hip motion. A method to plan a walking pattern consisting of a foot trajectory and a hip trajectory is presented. The effectiveness of the proposed method is illustrated by simulation results. Secondly, the paper brings forward a balance control technique based on off-line walking pattern with real-time modification. At last, the concept of Zero Moment Point (ZMP) is used to evaluate dynamic stability.

  • PDF