• Title/Summary/Keyword: motion response analysis

Search Result 1,098, Processing Time 0.048 seconds

Assessment of tunnel damage potential by ground motion using canonical correlation analysis

  • Chen, Changjian;Geng, Ping;Gu, Wenqi;Lu, Zhikai;Ren, Bainan
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.259-269
    • /
    • 2022
  • In this study, we introduce a canonical correlation analysis method to accurately assess the tunnel damage potential of ground motion. The proposed method can retain information relating to the initial variables. A total of 100 ground motion records are used as seismic inputs to analyze the dynamic response of three different profiles of tunnels under deep and shallow burial conditions. Nine commonly used ground motion parameters were selected to form the canonical variables of ground motion parameters (GMPCCA). Five structural dynamic response parameters were selected to form canonical variables of structural dynamic response parameters (DRPCCA). Canonical correlation analysis is used to maximize the correlation coefficients between GMPCCA and DRPCCA to obtain multivariate ground motion parameters that can be used to comprehensively assess the tunnel damage potential. The results indicate that the multivariate ground motion parameters used in this study exhibit good stability, making them suitable for evaluating the tunnel damage potential induced by ground motion. Among the nine selected ground motion parameters, peck ground acceleration (PGA), peck ground velocity (PGV), root-mean-square acceleration (RMSA), and spectral acceleration (Sa) have the highest contribution rates to GMPCCA and DRPCCA and the highest importance in assessing the tunnel damage potential. In contrast to univariate ground motion parameters, multivariate ground motion parameters exhibit a higher correlation with tunnel dynamic response parameters and enable accurate assessment of tunnel damage potential.

Development of a Dynamic Response Analysis Method of Tension Leg Platforms in Waves (인장 계류식 해양구조물의 동적응답 해석법의 개발)

  • 구자삼;이창호;홍봉기
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.133-146
    • /
    • 1993
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms (TLPs) in waves. The developed numerical approach is based on combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in usual two-step analysis method, proposed by Yoshida et. al. .The hydrodynamic interactions among TLP members, such as columms and pontoons, are included in the motion and structural analyses. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, of the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Seismic performance of the immersed tunnel under offshore and onshore ground motions

  • Bowei Wang;Guquan Song;Rui Zhang;Baokui Chen
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • There are obvious differences between the characteristics of offshore ground motion and onshore ground motion in current studies, and factors such as water layer and site conditions have great influence on the characteristics of offshore ground motion. In addition, unlike seismic response analysis of offshore superstructures such as sea-crossing bridges, tunnels are affected by offshore soil constraints, so it is necessary to consider the dynamic interaction between structure and offshore soil layer. Therefore, a seismic response analysis model considering the seawater, soil layer and tunnel structure coupling is established. Firstly, the measured offshore and different soil layers onshore ground records are input respectively, and the difference of seismic response under different types of ground motions is analyzed. Then, the models of different site conditions were input into the measured onshore bedrock strong ground motion records to study the influence of seawater layer and silt soft soil layer on the seabed and tunnel structure. The results show that the overall seismic response between the seabed and the tunnel structure is more significant when the offshore ground motion is input. The seawater layer can suppression the vertical seismic response of seabed and tunnel structure, while the slit soft soil layer can amplify the horizontal seismic response. The results will help to promote seismic wave selection of marine structures and provide reference for improving the accuracy of seismic design of immersed tunnels.

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

A Study on the analysis of ship motion using system identification method (시스템 식별법을 이용한 선체운동 해석에 관한 연구)

  • Song, Jaeyoung;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.271-271
    • /
    • 2019
  • Estimating ship motion is difficult because it take place in complex environments.. Estimating ship motion is an important factor in ensuring the safety of ship, so accurate estimates are needed. Existing motion-related studies compare the apparent motion of the model acquired and the reference model by experimenting with the ship motion on a particular alignment, making it difficult to intuitively estimate the hull motion. This study introduces the concept of estimating the characteristics of ship motion as a transfer function through pole-zero interpretation and frequency response analysis by applying the method of transfer function of Linear-Time Invariant system. Ship motion analysis model using Linear-Time Invariant system is consist with 1) wave as input signal 2) ship motion as output signal 3) hull defined as black box. This model can be defined by numericalizing the ship motion as a transfer function and is expected to facilitate the characterization of the ship motion through pole-zero analysis and frequency response analysis.

  • PDF

Application of frequency domain analysis for generation of seismic floor response spectra

  • Ghosh, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • This paper presents a case study with a multi-degree-of-freedom (MDOF) system where the Floor Response Spectra (FRS) have been derived from a large ensemble of ground motion accelerograms. The FRS are evaluated by the frequency response function which is calculated numerically. The advantage of this scheme over a repetitive time-history analysis of the entire structure for each accelerogram of the set has been highlighted. The present procedure permits generation of FRS with a specified probability of exceedence.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

A Dynamic Response Analysis of Tension Leg Platforms in Waves (I) (인장계규식 해양구조물의 동적응답해석(I))

  • 구자삼;김진하;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.161-172
    • /
    • 1995
  • A numerical procedure is described fro predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed flexible instead of the rigid body assumption used in tow-step analysis method. Both the hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural whole structure are formulated using element-fixed coordinate systems which have the origin at the node of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF