• 제목/요약/키워드: motion path

검색결과 548건 처리시간 0.026초

추계학적 점지진원 모델을 사용한 한반도 지반 운동의 경로 감쇠 효과 평가 (Estimation of Path Attenuation Effect from Ground Motion in the Korean Peninsula using Stochastic Point-source Model)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.9-17
    • /
    • 2020
  • The stochastic point-source model has been widely used in generating artificial ground motions, which can be used to develop a ground motion prediction equation and to evaluate the seismic risk of structures. This model mainly consists of three different functions representing source, path, and site effects. The path effect is used to emulate decay in ground motion in accordance with distance from the source. In the stochastic point-source model, the path attenuation effect is taken into account by using the geometrical attenuation effect and the inelastic attenuation effect. The aim of this study is to develop accurate equations of ground motion attenuation in the Korean peninsula. In this study, attenuation was estimated and validated by using a stochastic point source model and observed ground motion recordings for the Korean peninsula.

병렬구조 모션 시뮬레이터 이클립스-II 를 위한 가상현실 시험경로 개발 (Development of the Virtual Test Path for Eclipse-II, A Parallel Mechanism Motion Simulator)

  • 인우성;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.965-968
    • /
    • 2004
  • This paper describes the development of the test path for Eclipse-II, a parallel mechanism motion simulator. Eclipse-II which can be used as a base for general motion simulators, enables unlimited continuous 360-degree spinning in any rotational axes plus finite X, Y, and Z translation motions. The advantage of enabling continuous 360-degree spinning allows various motions for virtual reality. In this paper, the development of the test path to verify the robustness of the Eclipse-II motion simulator is described. The test motions, which satisfy the requirements of test path, are suggested and washout filter enables these motions reproduced in the limited workspace. The trial run is conducted to verify the robustness of the Eclipse-II motion simulator. Additionally the standard data format of virtual reality for Eclipse-II One Man Ride is suggested.

  • PDF

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

Influence of glide path size and operating kinetics on time to reach working length and fracture resistance of Twisted File adaptive and Endostar E3 nickel-titanium file systems

  • Ramyadharshini, Tamilkumaran;Sherwood, Inbaraj Anand;Vigneshwar, V Shanmugham;Prince, Prakasam Ernest;Vaanjay, Murugadoss
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.22.1-22.10
    • /
    • 2020
  • Objectives: This study investigated the influence of glide path size and operating kinetics on the time to reach the working length and the fracture resistance of Twisted File (TF) and Endostar E3 files. Materials and Methods: A total of 120 mandibular single-rooted premolars were selected. Two methods of kinetic motion (TF adaptive and continuous rotary motion) and file systems (TF and Endostar E3) were employed. The files were used in root canals prepared to apical glide path sizes of 15, 20, and 25. The time taken to reach the working length and the number of canals used before the instrument deformed or fractured were noted. Fractured instruments were examined with scanning electron microscopy. Results: The TF system took significantly more time to reach the working length than the Endostar E3 system. Both systems required significantly more time to reach the working length at the size 15 glide path than at sizes 20 and 25. A greater number of TFs than Endostar E3 files exhibited deformation, and a higher incidence of instrument deformation was observed in adaptive than in continuous rotary motion; more deformation was also observed with the size 15 glide path. One TF was fractured while undergoing adaptive motion. Conclusions: No significant difference was observed between continuous rotary and adaptive motion. The TF system and adaptive motion were associated with a higher incidence of deformation and fracture. Apical glide path sizes of 20 and 25 required significantly less time to reach the working length than size 15.

로봇팔의 최적 기하학적 경로 및 시간최소화 운동 (Optimal Geometric Path and Minimum-Time Motion for a Manipulator Arm)

  • 박종근;한성현;김태한;이상탁
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.204-213
    • /
    • 1999
  • This paper suggests a numerical method of finding optimal geometric path and minimum-time motion for a manipulator arm. To find the minimum-time motion, the optimal geometric path is searched first, and the minimum-time motion is searched on this optimal path. In the algorithm finding optimal geometric path, the objective function is minimizing the combination of joint velocities, joint-jerks, and actuator forces as well as avoiding several static obstacles, where global search is performed by adjusting the seed points of the obstacle models. In the minimum-time algorithm, the traveling time is expressed by the linear combinations of finite-term quintic B-splines and the coefficients of the splines are obtained by nonlinear programming to minimize the total traveling time subject to the constraints of the velocity-dependent actuator forces. These two search algorithms are basically similar and their convergences are quite stable.

  • PDF

퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어 (Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System)

  • 김승기;장효환;김창환
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

(sLa-pRc)타입의 가장 빠른 경로 탐색과 결함 검사 (The Fastest Path Search and Defect Inspection of Type (sLa-pRc))

  • 김순호;이은서;김치수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권10호
    • /
    • pp.385-390
    • /
    • 2021
  • 갠트리는 미소 칩을 피더에서 기판까지 이동하는 장비이다. 갠트리가 부품을 이동하는 중에 카메라는 부품의 상태를 검사한다. 본 논문의 목적은 갠트리의 이동시간이 가장 짧은 경로를 찾고 그 경로에 따른 이동시간을 계산한다. 현재 사용되고 있는 부품의 상태를 검사하는 방법은 stop_motion 방식이다. 본 논문은 moving_motion 방식과 카메라 앞에서 최대속도를 갖는 fly_motion 방식을 제시한다. 또한, 부품 상태의 검사는 시그니처 방법을 사용하였다. 3가지 방식의 갠트리가 이동하는 시간을 비교했을 때, stop_motion보다 moving_motion 방식은 9.42%, fly_motion 방식은 17.73% 향상되었다. 본 논문에서 제시한 fly_motion 방식을 갠트리 이동 경로에 사용할 경우 생산성이 향상될 것으로 생각한다.

매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘 (Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation)

  • 정원지;주지훈;이기상
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

차륜형 이동로봇의 경로 계획과 자율 주행을 위한 하이브리드 시스템 모델과 제어 (Hybrid System Modeling and Control for Path Planning and Autonomous Navigation of Wheeled Mobile Robots)

  • 임미섭;임준홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권1호
    • /
    • pp.33-40
    • /
    • 2000
  • In this paper, an integrated method for the path planning and motion control of wheeled mobile robots using a hybrid system model and control is presented. The hybrid model including the continuous dynamics and discrete dynamics with the continuous and discrete state vector is derived for a two wheel driven mobile robot. The architecture of the hybrid control system for real time path planning and following is designed which has the 3-layered hierarchical structure : the discrete event system using the digital automata as the higher process, the continuous state system for the wheel velocity controls as the lower process, and the interface system as the interaction process between the continuous system as the low level and the discrete event system as the high level. The reference motion commands for autonomous navigation are generated by the abstracted motion in the discrete event system. The motion control tasks including the feasible path planning and autonomous motion control with various initial conditions are investigated as the applications by the simulation studies.

  • PDF