• Title/Summary/Keyword: motion optimization

Search Result 552, Processing Time 0.026 seconds

Design of a Robust Position Tracking Controller with Sliding Mode for a 6-DOF Micropositioning Stage (6자유도 정밀 스테이지의 추종제어를 위한 슬라이딩 모드 제어기 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • As high precision industries such as semiconductor, TFT-LCD manufacturing and MEMS continue to grow, the demand for higher DOF precision stages has been increasing. In general, the stages should accommodate a prescribed range of payloads in order to position various precision manufacturing/inspection instruments. Therefore a nonlinear controller using sliding motion is developed, which bears mass perturbation and makes the upper plate of the stage move in 6 DOF. For the application of the nonlinear control, an observer is also developed based on expected noise covariance. To eliminate the steady state error of step response, integral terms are inserted into the state-space model. The linear term of the controller is designed using optimization scheme in which parameters can be weighted according to their physical significance, whereas the nonlinear term of the controller is designed using trial and error method. A comprehensive simulation study proves that the designed controller is robust against mass perturbation and completely eliminates steady state errors.

Seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach

  • Huang, Qi;Zou, Jin-feng;Qian, Ze-hang
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • To give a solution for seismic stability of tunnel faces subjected to earthquake ground shakings, the pseudo-dynamic approach is originally introduced to analyze tunnel face stability in this study. In the light of the upper-bound theorem of limit analysis, an advanced three-dimensional mechanism combined with pseudo-dynamic approach is proposed. Based on this mechanism, the required support pressure on tunnel face can be obtained by equaling external work rates to the internal energy dissipation and implementing an optimization searching procedure related to time. Both time and space feature of seismic waves are properly accounted for in the proposed mechanism. For this reason, the proposed mechanism can better represent the actual influence of seismic motion and has a remarkable advantage in evaluating the effects of vertical seismic acceleration, soil amplification factor, seismic wave period and initial phase difference on tunnel face stability. Furthermore, the pseudo-dynamic approach is compared with the pseudo-static approach. The difference between them is illustrated from a new but understandable perspective. The comparison demonstrates that the pseudo-static approach is a conservative method but still could provide precise enough results as the pseudo-dynamic approach if the value of seismic wavelengths is large or the height of soil structures is small.

Crack identification in post-buckled beam-type structures

  • Moradi, Shapour;Moghadam, Peyman Jamshidi
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1233-1252
    • /
    • 2015
  • This study investigates the problem of crack detection in post-buckled beam-type structures. The beam under the axial compressive force has a crack, assumed to be open and through the width. The crack, which is modeled by a massless rotational spring, divides the beam into two segments. The crack detection is considered as an optimization problem, and the weighted sum of the squared errors between the measured and computed natural frequencies is minimized by the bees algorithm. To find the natural frequencies, the governing nonlinear equations of motion for the post-buckled state are first derived. The solution of the nonlinear differential equations of the two segments consists of static and dynamic parts. The differential quadrature method along with an arc length strategy is used to solve the static part, while the same method is utilized for the solution of the linearized dynamic part and the extraction of the natural frequencies of the cracked beam. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams having open cracks. The results show that several parameters such as the amount of applied compressive force and boundary conditions influences the outcome of the crack detection scheme. The identification results also show that the crack position and depth can be predicted well by the presented method.

Feature Based Multi-Resolution Registration of Blurred Images for Image Mosaic

  • Fang, Xianyong;Luo, Bin;He, Biao;Wu, Hao
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Existing methods for the registration of blurred images are efficient for the artificially blurred images or a planar registration, but not suitable for the naturally blurred images existing in the real image mosaic process. In this paper, we attempt to resolve this problem and propose a method for a distortion-free stitching of naturally blurred images for image mosaic. It adopts a multi-resolution and robust feature based inter-layer mosaic together. In each layer, Harris corner detector is chosen to effectively detect features and RANSAC is used to find reliable matches for further calibration as well as an initial homography as the initial motion of next layer. Simplex and subspace trust region methods are used consequently to estimate the stable focal length and rotation matrix through the transformation property of feature matches. In order to stitch multiple images together, an iterative registration strategy is also adopted to estimate the focal length of each image. Experimental results demonstrate the performance of the proposed method.

Development of Automatic Packing System of One Station for Fasteners(I): Optimization Design of Packing Mechanism (원 스테이션 파스너 자동포장기 개발(I): 패킹 메커니즘의 최적설계)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.335-341
    • /
    • 2011
  • In this paper, we proposed an automatic packing mechanism of one station concept for fastener objects where the continuous work is performed in a finite space. The proposed packing mechanism is composed of supporting frame, feeding supply, air shower device, clamping/opening device, batch charging device, sealing/cutting device and supply adjusting device. And, these mechanisms have been modularized through mechanical, dynamical, structural and fluid optimized design using the SMO(SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The packing process is consisted performed in the order of feeding, clamping, bottom sealing, cutting, opening, object charging, closing and the upper sealing. And the time of these cycles were designed to be completed in 15-20 seconds. This packing mechanism will be created as a prototype in the near future. In addition, it will be applied to the production scenes after going through a field test for the validation of performance.

Energy-Efficient Adaptive Dynamic Sensor Scheduling for Target Monitoring in Wireless Sensor Networks

  • Zhang, Jian;Wu, Cheng-Dong;Zhang, Yun-Zhou;Ji, Peng
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.857-863
    • /
    • 2011
  • Due to uncertainties in target motion and randomness of deployed sensor nodes, the problem of imbalance of energy consumption arises from sensor scheduling. This paper presents an energy-efficient adaptive sensor scheduling for a target monitoring algorithm in a local monitoring region of wireless sensor networks. Owing to excessive scheduling of an individual node, one node with a high value generated by a decision function is preferentially selected as a tasking node to balance the local energy consumption of a dynamic clustering, and the node with the highest value is chosen as the cluster head. Others with lower ones are in reserve. In addition, an optimization problem is derived to satisfy the problem of sensor scheduling subject to the joint detection probability for tasking sensors. Particles of the target in particle filter algorithm are resampled for a higher tracking accuracy. Simulation results show this algorithm can improve the required tracking accuracy, and nodes are efficiently scheduled. Hence, there is a 41.67% savings in energy consumption.

A force-Guided Control with Adaptive Accommodation Bor Complex Assembly

  • Sungchul Kang;Kim, Munsang;Lee, Chong W.;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.14-19
    • /
    • 1998
  • In this paper, a target approachable force-guided control with adaptive accommodation for the complex assembly is presented. The complex assembly (CA) is defined as a task which deals with complex shaped parts including concavity or whose environment is so complex that unexpected contacts occur frequently during insertion. CA tasks are encountered frequently in the field of the manufacturing automation and various robot applications. To make CA successful, both the bounded wrench condition and the target approachability condition should be satisfied simultaneously during insertion. By applying the convex optimization technique, an optimum target approaching twist can be determined at each instantaneous contact state as a global minimum solution. Incorporated with an admissible perturbation method, a new CA algorithm using only the sensed resultant wrench and the target twist is developed without motion planning nor contact analysis which requires the geometry of the part and the environment. Finally, a VME-bus based real-time control system is built to experiment various CA task. T-insertion task as a planar CA and double-peg assembly task as a spacial assembly were successfully executed by implementing the new force-guided control with adaptive accommodation.

  • PDF

EXPERIMENTAL APPROACH FOR EVALUATING EXHAUST FLOW DISTRIBUTION FOR PZEV EXHAUST MANIFOLDS USING A SIMULATED DYNAMIC FLOW BENCH

  • Hwang, I.G.;Myung, C.L.;Kim, H.S.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.575-581
    • /
    • 2007
  • As current and future automobile emission regulations become more stringent, the research on flow distribution for an exhaust manifold and close-coupled catalyst(CCC) has become an interesting and remarkable subjects. The design of a CCC and exhaust manifold is a formidable task due to the complexity of the flow distribution caused by the pulsating flows from piston motion and engine combustion. Transient flow at the exhaust manifold can be analyzed with various computational fluid dynamics(CFD) tools. However, the results of such simulations must be verified with appropriate experimental data from real engine operating condition. In this study, an experimental approach was performed to investigate the flow distribution of exhaust gases for conventional cast types and stainless steel bending types of a four-cylinder engine. The pressure distribution of each exhaust sub-component was measured using a simulated dynamic flow bench and five-hole pitot probe. Moreover, using the results of the pitot tube measurement at the exit of the CCC, the flow distribution for two types of manifolds(cast type and bending type) was compared in terms of flow uniformity. Based on these experimental techniques, this study can be highly applicable to the design and optimization of exhaust for the better use of catalytic converters to meet the PZEV emission regulation.

Development of 3-axis Moving Magnet Type Actuator (가동 자석형 3 축 구동 엑츄에이터 개발)

  • Song, Myeong-Gyu;Hur, Young-Jun;Park, No-Cheol;Yoo, Jeong-Hoon;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.191-195
    • /
    • 2007
  • The optical disc drive has used a high NA objective lens and a shorter wavelength laser diode for high recording density. But high NA and shorter wavelength cause several margins to become short. Focusing and tracking servo has to be more accurate and active tilt compensation mechanism is also needed for coma aberration compensation. In this paper, we proposed 3-axis moving magnet type actuator. For 3-DOF motion, moving coil actuator has to be equipped with 6 wires for supplying 3 independent signals. However, moving magnet type actuator doesn't need to change the configuration of wires because coils are in stator. So, we added a tilt mechanism to the 2-axis moving magnet actuator which is designed in previous research. Addition of the tilt mechanism cuts down the focus sensitivity. So, maximization the tilting sensitivity and securing the focusing sensitivity are objectivities of this research. DOE (design of experiments) procedures of electromagnetic circuit are performed for parameter study and the optimization is also performed to maximize the tilt sensitivity. And then the final design is suggested and its performance is verified by FE simulation.

  • PDF

Control of FES Cycling Considering Muscle Fatigue (근피로를 고려한 FES 싸이클링의 제어)

  • Kim Chul-seung;Hase Kazunori;Kang Gon;Eom Gwang-moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.207-212
    • /
    • 2005
  • The purpose of this work is to develop the FES controller that can cope with the muscle fatigue which is one of the most important problems of current FES (Functional Electrical Stimulation). The feasibility of the proposed FES controller was evaluated by simulation. We used a fitness function to describe the effect of muscle fatigue and recovery process. The FES control system was developed based on the biological neuronal system. Specifically, we used PD (Proportional and Derivative) and GC (Gravity Compensation) control, which was described by the neuronal feedback structure. It was possible to control of multiple joints and muscles by using the phase-based PD and GC control method and the static optimization. As a result, the proposed FES control system could maintain the cycling motion in spite of the muscle fatigue. It is expected that the proposed FES controller will play an important role in the rehabilitation of SCI patient.