• Title/Summary/Keyword: motion map

Search Result 325, Processing Time 0.03 seconds

A Numerical Experiment on the Control of Chaotic Motion (혼돈 운동 제어에 관한 수치 실험)

  • 홍대근;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.154-159
    • /
    • 1997
  • In this paper, we describe the OGY method that convert the motion on a chaotic attractor to attracting time periodic motion by malting only small perturbations of a control parameter. The OGY method is illustrated by application to the control of the chaotic motion in chaotic attractor to happen at the famous Logistic map and Henon map and confirm it by making periodic motion. We apply it the chaotic motion at the behavior of the thin beam under periodic torsional base-excitation, and this chaotic motion is made the periodic motion by numerical experiment in the time evaluation on this chaotic motion. We apply the OGY method with the Jacobian matrix to control the chaotic motion to the periodic motion.

  • PDF

Motion Estimation-based Human Fall Detection for Visual Surveillance

  • Kim, Heegwang;Park, Jinho;Park, Hasil;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.327-330
    • /
    • 2016
  • Currently, the world's elderly population continues to grow at a dramatic rate. As the number of senior citizens increases, detection of someone falling has attracted increasing attention for visual surveillance systems. This paper presents a novel fall-detection algorithm using motion estimation and an integrated spatiotemporal energy map of the object region. The proposed method first extracts a human region using a background subtraction method. Next, we applied an optical flow algorithm to estimate motion vectors, and an energy map is generated by accumulating the detected human region for a certain period of time. We can then detect a fall using k-nearest neighbor (kNN) classification with the previously estimated motion information and energy map. The experimental results show that the proposed algorithm can effectively detect someone falling in any direction, including at an angle parallel to the camera's optical axis.

On-line Motion Planner for Multi-Agents based on Real-Time Collision Prognosis

  • Ji, Sang-Hoon;Kim, Ji-Min;Lee, Beom-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.74-79
    • /
    • 2005
  • In this paper, we propose a novel approach to decentralized motion planning and conflict-resolution for multiple mobile agents working in an environment with unexpected moving obstacles. Our proposed motion planner has two characteristics. One is a real-time collision prognosis based on modified collision map. Collision map is a famous centralized motion planner with low computation load, and the collision prognosis hands over these characteristics. And the collision prognosis is based on current robots status, maximum robot speeds, maximum robot accelerations, and path information produced from off-line path planning procedure, so it is applicable to motion planner for multiple agents in a dynamic environment. The other characteristic is that motion controller architecture is based on potential field method, which is capable of integrating robot guidance to the goals with collision avoidance. For the architecture, we define virtual obstacles making delay time for collision avoidance from the real-time collision prognosis. Finally the results obtained from realistic simulation of a multi-robot environment with unknown moving obstacles demonstrate safety and efficiency of the proposed method.

  • PDF

Fast Reference Frame Selection Algorithm Based on Motion Vector Reference Map (움직임 벡터 참조 지도 기반의 고속 참조 영상 선택 방법)

  • Lee, Kyung-Hee;Ko, Man-Geun;Seo, Bo-Seok;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.28-35
    • /
    • 2010
  • The variable block size motion estimation (ME) and compensation (MC) using multiple reference frames is adopted in H.264/AVC to improve coding efficiency. However, the computational complexity for ME/MC increases proportional to the number of reference frames and variable blocks. In this paper, we propose a new efficient reference frame selection algorithm to reduce the complexity while keeping the visual quality. First, a motion vector reference map is constructed by SAD of $4{\times}4$ block unit for multi reference frames. Next, the variable block size motion estimation and motion compensation is performed according to the motion vector reference map. The computer simulation results show that the average loss of BDPSNR is -0.01dB, the increment of BDBR is 0.27%, and the encoding time is reduced by 38% compared with the original method for H.264/AVC.

Implementing a Depth Map Generation Algorithm by Convolutional Neural Network (깊이맵 생성 알고리즘의 합성곱 신경망 구현)

  • Lee, Seungsoo;Kim, Hong Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • Depth map has been utilized in a varity of fields. Recently research on generating depth map by artificial neural network (ANN) has gained much interest. This paper validates the feasibility of implementing the ready-made depth map generation by convolutional neural network (CNN). First, for a given image, a depth map is generated by the weighted average of a saliency map as well as a motion history image. Then CNN network is trained by test images and depth maps. The objective and subjective experiments are performed on the CNN and showed that the CNN can replace the ready-made depth generation method.

Enhancement of Saliency Map Using Motion and Affinity Model (운동 및 근접 모델을 이용하는 관심맵의 향상)

  • Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.557-567
    • /
    • 2015
  • Over the past decades, a variety of spatial saliency methods have been introduced. Recently, motion saliency has gained much interests, where motion data estimated from an image sequence are utilized. In general, motion saliency requires reliable motion data as well as image segmentation for producing satisfactory saliency map which poses difficulty in most natural images. To overcome this, we propose a motion-based saliency generation that enhances the spatial saliency based on the combination of spatial and motion saliencies as well as motion complexity without the consideration of complex motion classification and image segmentation. Further, an affinity model is integrated for the purpose of connecting close-by pixels with different colors and obtaining a similar saliency. In experiment, we performed the proposed method on eleven test sets. From the objective performance evaluation, we validated that the proposed method produces better result than spatial saliency based on objective evaluation as well as ROC test.

Maximum A Posteriori Estimation-based Adaptive Search Range Decision for Accelerating HEVC Motion Estimation on GPU

  • Oh, Seoung-Jun;Lee, Dongkyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4587-4605
    • /
    • 2019
  • High Efficiency Video Coding (HEVC) suffers from high computational complexity due to its quad-tree structure in motion estimation (ME). This paper exposes an adaptive search range decision algorithm for accelerating HEVC integer-pel ME on GPU which estimates the optimal search range (SR) using a MAP (Maximum A Posteriori) estimator. There are three main contributions; First, we define the motion feature as the standard deviation of motion vector difference values in a CTU. Second, a MAP estimator is proposed, which theoretically estimates the motion feature of the current CTU using the motion feature of a temporally adjacent CTU and its SR without any data dependency. Thus, the SR for the current CTU is parallelly determined. Finally, the values of the prior distribution and the likelihood for each discretized motion feature are computed in advance and stored at a look-up table to further save the computational complexity. Experimental results show in conventional HEVC test sequences that the proposed algorithm can achieves high average time reductions without any subjective quality loss as well as with little BD-bitrate increase.

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Fast Motion Estimation Algorithm Using Motion Vector Prediction and Neural Network (움직임 예측과 신경 회로망을 이용한 고속 움직임 추정 알고리즘)

  • 최정현;이경환;이법기;정원식;김경규;김덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1411-1418
    • /
    • 1999
  • In this paper, we propose a fast motion estimation algorithm using motion prediction and neural network. Considering that the motion vectors have high spatial correlation, the motion vector of current block is predicted by those of neighboring blocks. The codebook of motion vector is designed by Kohonen self-organizing feature map(KSFM) learning algorithm which has a fast learning speed and 2-D adaptive chararteristics. Since the similar codevectors are closely located in the 2-D codebook the motion is progressively estimated from the predicted codevector in the codebook. Computer simulation results show that the proposed method has a good performance with reduced computational complexity.

  • PDF

Dense Optical flow based Moving Object Detection at Dynamic Scenes (동적 배경에서의 고밀도 광류 기반 이동 객체 검출)

  • Lim, Hyojin;Choi, Yeongyu;Nguyen Khac, Cuong;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.