• Title/Summary/Keyword: motion error

Search Result 1,367, Processing Time 0.028 seconds

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

A Quadtree-based Disparity Estimation for 3D Intermediate View Synthesis (3차원 중간영상의 합성을 위한 쿼드트리기반 변이추정 방법)

  • 성준호;이성주;김성식;하태현;김재석
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.257-273
    • /
    • 2004
  • In stereoscopic or multi-view three dimensional display systems, the synthesis of intermediate sequences is inevitably needed to assure look-around capability and continuous motion parallax so that it could enhance comfortable 3D perception. The quadtree-based disparity estimation is one of the most remarkable methods for synthesis of Intermediate sequences due to the simplicity of its algorithm and hardware implementation. In this paper, we propose two ideas in order to reduce the annoying flicker at the object boundaries of synthesized intermediate sequences by quadtree-based disparity estimation. First, new split-scheme provides more consistent auadtree-splitting during the disparity estimation. Secondly, adaptive temporal smoothing using correlation between present frame and previous one relieves error of disparity estimation. Two proposed Ideas are tested by using several stereoscopic sequences, and the annoying flickering is remarkably reduced by them.

A Study on Wear and Wear Mechanism of Exhaust Valve and Seat Insert Depending on Different Speeds Using a Simulator

  • Hong, Jae-Soo;Chun, Keyoung-Jin;Youn, Young-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2052-2060
    • /
    • 2006
  • The wear of engine valve and seat insert is one of the most important factors which affect engine performance. Because of higher demands on performance and the increasing use of alternative fuel, engine valve and seat insert are challenged with greater wear problems than in the past. In order to solve the above problems, a simulator was developed to be able to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focuses on the different degrees of wear at three different singular test speeds (10 Hz, 25 Hz & multi-Hz). For this study, the temperature of the outer surface of the seat insert was controlled at 350$^{\circ}C$, and the test load was 1960 N. The test cycle number was $6.0{\times}10^6$. The mean ($\pm$standard error) wear depth of the valve at 10 Hz and 25 Hz was 45.1 ($\pm$3.7)$\mu$m and 81.7 ($\pm$2.5)$\mu$m, respectively. The mean wear depth of the seat insert at 10 Hz and 25 Hz was 52.7 ($\pm$3.9)$\mu$m and 91.2 ($\pm$2.7)$\mu$m, respectively. In the case of multi-Hz it was 70.7 ($\pm$2.4)$\mu$m and 77.4 ($\pm$3.8)$\mu$m, respectively. It was found that higher speed (25 Hz) cause a greater degree of wear than lower speed (10 Hz) under identical test condition (temperature, valve displacement, cycle number and test load). In the wear mechanisms of valves, adhesive wear, shear strain and abrasive wear could be observed. Also, in the wear mechanisms of seat inserts, adhesive wear, surface fatigue wear and abrasive wear could be observed.

An Experimental Study on the Aerodynamic Characteristics of a Streamline-designed High-speed Bus (유선형 고속주행 버스의 공력특성에 관한 실험 연구)

  • Kim, Chul-Ho;Lee, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.198-204
    • /
    • 2016
  • In this study, a wind tunnel test was conducted to measure the aerodynamic characteristics of a streamline-designed high-speed bus with the change of wind direction and speed and the result is compared with the aerodynamic performance of a commercialized high-speed bus model (Model-0) manufactured by Zyle Daewoo Bus Corp. Aerodynamic performance of the existing rear-spoiler was tested to prove its aerodynamic effect on the test model bus. From the study, it was found that 24.6 % of the total drag of the original bus model (Model-0) was reduced on the streamline-designed model bus(model-1) without the rear-spoiler but only 14.3 % of the total drag was reduced with the spoiler on the streamlined model bus. It means that the rear spoiler does not work properly with the streamlined model bus (model-1) and should be noted that an optimum design of a rear-spoiler of a vehicle is important to reduce the induced pressure drag and increase the driving stability of a vehicle against yaw motion. The experimental outcome was also compared to the previous numerical research result to evaluate the reliability of the numerical algorithm of the aerodynamic performance analysis of a vehicle. The error rate (%) of the numerical result to the experimental output is about 5.4 % and it is due to the simplified body configuration of the numerical model bus. The drag increases at the higher yaw angle because the transparent frontal area of the model vehicle increases and the downward force increases with the yaw angle as well. It has a positive effect to the driving stability of the vehicle but the moderated downward force should be kept for the fuel economy of a vehicle.

Measurements of Radial In-plane Vibration Characteristics of Piezoelectric Disk Transducers (원판형 압전 변환기의 면내 방사 진동 특성 측정)

  • Kim, Dae Jong;Oh, Se Hwan;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • The paper experimentally deals with the radial in-plane vibration characteristics of disk-shaped piezoelectric transducers. The radial in-plane motion, which is induced due to Poisson's ratio in the piezoelectric disk polarized in the thickness direction, was measured by using an in-plane laser vibrometer, and the natural frequencies were measured by using an impedance analyzer. The experimental results have been compared with theoretical predictions obtained by simplified theoretical and finite-element analyses. It appears that the fundamental mode of a piezoelectric disk transducer is a radial mode and its radial displacement distribution from the center to the perimeter is not monotonic but shows maximum slightly apart from the perimeter. The theoretically-calculated fundamental frequencies agree well with the finite-element results for small thickness-to-diameter ratio, and they are accurate within 7 % error for the ratio up to 0.4.

Performance Evaluation of a Large-scale MR Damper for Controlling Seismic Response using a Real-time Hybrid Test Method (실시간 하이브리드 실험법을 이용한 대형 MR감쇠기의 제진 성능평가)

  • Chung, Hee-San;Lee, Sung-Kyung;Park, Eun-Churn;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Heon-Jae;Choi, Kang-Min;Moon, Suk-Jun;Jung, Hyung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.655-660
    • /
    • 2007
  • This paper presents real-time hybrid test method of large-scale MR damper applied to a building structure under seismic excitation. The real-time hybrid test using an actuator for the control performance evaluation of a MR damper controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a large-scale MR damper adopted as an experimental part was installed to reduce its response. At first, the force that is acting between a MR damper and building structure is measured from the load cell attached on the actuator system and is fed-back to the computer to control the motion of the actuator. Then, the actuator is so driven that the error between the interface displacement computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the actuator. The control efficiency of the MR damper used in this paper is experimentally confirmed by implementing this process of experiment on real-time.

  • PDF

Development of Line Standards Measurement System Using an Optical Microscope (광학 현미경을 이용한 선표준물 측정 시스템 개발)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

The star catalogue in Seonggyeong - Comparison with the modern Hipparcos Catalogue

  • Kim, Dong-Bin;Kim, Chun-Hwey;Lee, Yong-Sam
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • In 1861 Nam Byeong-Gil published a book called as "Seonggyeong" which contains a star catalogue (NBGC) with the positions, magnitudes, and star maps for 1449 stars. The NBGC lists only the traditional Chinese stars selected from "the sequel to the Qing Dynasty Star Catalogue and Star Map." To identify each star from the NBGC with modern counterpart, we correct the positions of the Hipparcos stars brighter than 6.5 mag for proper motion, then precess the coordinates to the epoch of the NBGC. For each star in the NBGC, we find the nearest counterpart in the Hipparcos Catalogue (HC). If a much brighter star is at a slightly larger angular distance, we select that star as the secure counterpart. As a result, 95.5% of the stars in the NBGC were identified. We find a very good overall agreement of our results with a previous analysis by Ahn et al. (1996, Journal of the Korean History of Science Society, vol. I). For securely identified stars, we analyse its accuracy on the basis of comparison with data from the HC. The correlation of the errors between right ascensions and declinations is significantly deviated from spherical distribution. The magnitudes recorded in the NBGC correlate well with modern values. The accuracy of position decreases slowly with magnitude. Right ascensions and declinations have error distributions with ${\sigma}$ = 2.0' for the former while the latter with ${\sigma}$ = 1.6', but with much more errors >5' than expected for a Gaussian distribution.

  • PDF

Camera Tracking Method based on Model with Multiple Planes (다수의 평면을 가지는 모델기반 카메라 추적방법)

  • Lee, In-Pyo;Nam, Bo-Dam;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.11 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • This paper presents a novel camera tracking method based on model with multiple planes. The proposed algorithm detects QR code that is one of the most popular types of two-dimensional barcodes. A 3D model is imported from the detected QR code for augmented reality application. Based on the geometric property of the model, the vertices are detected and tracked using optical flow. A clipping algorithm is applied to identify each plane from model surfaces. The proposed method estimates the homography from coplanar feature correspondences, which is used to obtain the initial camera motion parameters. After deriving a linear equation from many feature points on the model and their 3D information, we employ DLT(Direct Linear Transform) to compute camera information. In the final step, the error of camera poses in every frame are minimized with local Bundle Adjustment algorithm in real-time.

Autonomous-guided orchard sprayer using overhead guidance rail (요버헤드 가이던스 레일 추종 방식에 의한 과수방제기의 무인 주행)

  • Shin, B.S.;Kim, S.H.;Park, J.U.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.489-499
    • /
    • 2006
  • Since the application of chemicals in confined spaces under the canopy of an orchard is hazardous work, it is needed to develop an autonomous guidance system for an orchard sprayer. The autonomous guidance system developed in this research could steer the vehicle by tracking an overhead guidance rail, which was installed on an existing frame structure. The autonomous guidance system consisted of an 80196 kc microprocessor, an inclinometer, two interface circuits of actuators for steering and ground speed control, and a fuzzy control algorithm. In addition, overhead guidance rails for both straight and curved paths were devised, and a trolley was designed to move smoothly along the overhead guidance rails. Evaluation tests showed that the experimental vehicle could travel along the desired path at a ground speed of 30 $\sim$ 50 cm/s with a RMS error of 5 cm and maximum deviation of less than 12 cm. Even when the vehicle started with an initial offset or a deflected heading angle, it could move quickly to track the desired path after traveling 2 $\sim$ 3 m. The vehicle could also complete turns with a curvature of 1 m. However, at a ground speed of 50 cm/s, the vehicle tended to over-steer, resulting in a zigzag motion along the straight path, and tended to turn outward from the projected line of the guidance rail.