• 제목/요약/키워드: motion correction

검색결과 383건 처리시간 0.024초

Effects of spatial variability of earthquake ground motion in cable-stayed bridges

  • Ferreira, Miguel P.;Negrao, Joao H.
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.233-247
    • /
    • 2006
  • Most codes of practice state that for large in-plane structures it is necessary to account for the spatial variability of earthquake ground motion. There are essentially three effects that contribute for this variation: (i) wave passage effect, due to finite propagation velocity; (ii) incoherence effect, due to differences in superposition of waves; and (iii) the local site amplification due to spatial variation in geological conditions. This paper discusses the procedures to be undertaken in the time domain analysis of a cable-stayed bridge under spatial variability of earthquake ground motion. The artificial synthesis of correlated displacements series that simulate the earthquake load is discussed first. Next, it is described the 3D model of the International Guadiana Bridge used for running tests with seismic analysis. A comparison of the effects produced by seismic waves with different apparent propagation velocities and different geological conditions is undertaken. The results in this study show that the differences between the analysis with and without spatial variability of earthquake ground motion can be important for some displacements and internal forces, especially those influenced by symmetric modes.

Smart Control System Using Fuzzy and Neural Network Prediction System

  • Kim, Tae Yeun;Bae, Sang Hyun
    • 통합자연과학논문집
    • /
    • 제12권4호
    • /
    • pp.105-115
    • /
    • 2019
  • In this paper, a prediction system is proposed to control the brightness of smart street lamps by predicting the moving path through the reduction of consumption power and information of pedestrian's past moving direction while meeting the function of existing smart street lamps. The brightness of smart street lamps is adjusted by utilizing the walk tracking vector and soft hand-off characteristics obtained through the motion sensing sensor of smart street lamps. In addition, the motion vector is used to analyze and predict the pedestrian path, and the GPU is used for high-speed computation. Pedestrians were detected using adaptive Gaussian mixing, weighted difference imaging, and motion vectors, and motions of pedestrians were analyzed using the extracted motion vectors. The preprocessing process using linear interpolation is performed to improve the performance of the proposed prediction system. Fuzzy prediction system and neural network prediction system are designed in parallel to improve efficiency and rough set is used for error correction.

비선형성(非線型性)을 고려(考慮)한 규칙파중(規則波中) 선체응답(船體應答)에 관(關)한 연구(硏究) (Nonlinear Effects on a Ship Motion and Wave Load)

  • 황종흘;김용직;김진영;오일근
    • 대한조선학회지
    • /
    • 제22권3호
    • /
    • pp.1-8
    • /
    • 1985
  • In this paper, the motion response and wave load of a container ship are treated by a nonlinear motion theory, which is similar to that used by Yamamoto et. al.[1]. This paper deals with the vertical motion response in oblique waves and the effect of the Smith correction in buoyancy force calculation. In the present computation, for S-175 container ship model our result also shows that the ratio of the motion peak to peak value to the wave height decreases as the wave height increases, which was obtained earlier by Yamamoto et.al.[3]. On the other hand the nondimensional midship bending moment increases as the wave height increases. These nonlinear effects are dominant near the resonance frequency, and depend on the hull form and forward speed. However, it is found that these nonlinear effects are significant for tanker model.

  • PDF

호흡운동에 의한 MRI 아티팩트의 수정 (Correction of MRI Artifact due to Planar Respiratory Motion)

  • 김응규;김규헌
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1863-1866
    • /
    • 2003
  • In this study, respiratory motion is modeled by a 2-Dimensional linear expanding-shrinking movement. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimated, a reconstruction algorithm based on superposition method was used to removed the MRI artifact. For the purpose of estimating unknown motion parameters, we applied the spectrum shift method to find the respiratory fluctuation function, the x directional expansion coefficient and its center, and also we used the minimum energy method to find the y directional expansion coefficient and its center. The effectiveness of this presented method is shown by Computer simulations.

  • PDF

회전 및 병진 흔들림 영상의 안정화 기법 (A Stabilization Method for Rotated and Translated Images)

  • 석호동;유준
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.810-817
    • /
    • 2006
  • This paper presents a rotational motion estimation and correction technique for digital image stabilization. An equivalent rotation model is derived so as to accommodate a combined rotational and the translational motion. Thanks to this simplification, the suggested estimation algorithm can directly find the rotational center using geometric characteristic of local motion vectors instead of using searching method. And we also present recursive version of frame to reference algorithm(FRA) for the real time implementation. The proposed DIS system does not require time consuming parameter searching process, while showing comparatively good performance compared with the previous ones. To show the effectiveness of the DIS scheme, the algorithm has been implemented on the DSP based hardware system and experimental results are also discussed.

A novel detection method of periodically moving region in radial MRI

  • Seo, Hyunseok;Park, HyunWook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제2권4호
    • /
    • pp.203-207
    • /
    • 2013
  • The appropriate handling of motion artifacts is essential for clinical diagnosis in magnetic resonance imaging (MRI). In many cases, motion is an inherent part of MR images because it is difficult to control during MR imaging. As the motion in the human body occur in a deformable manner, they are difficult to deal with. This paper proposes a novel detection method for periodically moving regions to produce MR images with less motion artifacts. When the data is acquired by the radial trajectory, the proposed method can extract the deformable region easily using the difference in the modulated sinograms, which have different periodic phase terms. The simulation results applied to the various cases confirmed the good performance of the proposed method.

  • PDF

호흡운동에 따른 MRI 아티팩트 수정 (MRI Artifact Correction due to Respiratory Motion)

  • 김응규;김규헌
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.58-61
    • /
    • 2003
  • In this study, a planar respiratory motion is modeled by a 2-D linear expanding-shrinking movement. According to the introduced model, respiratory motion imposes phase error, non-uniform sampling and amplitude modulation distortions on the acquired MRI data. When the motion parameters are known or can be estimated, a construction algorithm based on superposition method was used to remove the MRI artifact. For the purpose of estimating unknown motion parameters, we used the spectrum shift method to find the respiratory fluctuation function, the x directional expansion coefficient and its center, and we also used the minimum energy method to find the y directional expansion coefficient and its center. Finally the effectiveness of this presented method is shown by computer simulations.

  • PDF

A Non-uniform Correction Algorithm Based on Scene Nonlinear Filtering Residual Estimation

  • Hongfei Song;Kehang Zhang;Wen Tan;Fei Guo;Xinren Zhang;Wenxiao Cao
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.408-418
    • /
    • 2023
  • Due to the technological limitations of infrared thermography, infrared focal plane array (IFPA) imaging exhibits stripe non-uniformity, which is typically fixed pattern noise that changes over time and temperature on top of existing non-uniformities. This paper proposes a stripe non-uniformity correction algorithm based on scene-adaptive nonlinear filtering. The algorithm first uses a nonlinear filter to remove single-column non-uniformities and calculates the actual residual with respect to the original image. Then, the current residual is obtained by using the predicted residual from the previous frame and the actual residual. Finally, we adaptively calculate the gain and bias coefficients according to global motion parameters to reduce artifacts. Experimental results show that the proposed algorithm protects image edges to a certain extent, converges fast, has high quality, and effectively removes column stripes and non-uniform random noise compared to other adaptive correction algorithms.

Motion analysis within non-rigid body objects in satellite images using least squares matching

  • Hasanlou M.;Saradjian M.R.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.47-51
    • /
    • 2005
  • Using satellite images, an optimal solution to water motion has been presented in this study. Since temperature patterns are suitable tracers in water motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been applied to estimate water body motion within the two SST images. The least squares matching technique, as a flexible technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for simultaneous local radiometric correction and local geometrical image orientation estimation. Actually, the correspondence between the two image templates is modeled both geometrically and radiometrically. Geometric component of the model includes six geometric transformation parameters and radiometric component of the model includes two radiometric transformation parameters. Using the algorithm, the parameters are automatically corrected, optimized and assessed iteratively by the least squares algorithm. The method used in this study, has presented more efficient and robust solution compared to the traditional motion estimation schemes.

  • PDF

DISK LUMINOSITY FUNCTION BASED ON THE LOWELL PROPER MOTION SURVEY

  • Kim, Mee-Jeong;Lee, Sang-Gak
    • 천문학회지
    • /
    • 제24권2호
    • /
    • pp.173-190
    • /
    • 1991
  • Disk stellar luminosity function has been derived with stars in the Lowell Proper Motion Survey which contains about 9000 stars with ${\mu}\;{\geq}\;0".27$ of arc/yr, $8\;<\;m_{pg}\;<\;17$ and with bright stars in the Smithsonian Astrophysical Observatory (SAO) Star Catalogue, Luminosity function has been obtained with stars within 20 pc by Luyten's mean absolute magnitudes method using Reduced Proper Motion Diagram to select disk stars. Magnitudes and colors, in the SAO Star Catalogue as well as in the Lowell Proper Motion Survey have been transformed to the UBV system from the published UBV data. It has been found that stars which have higher proper motion than the original limit of the proper motion survey are missed, when the relation between the absolute magnitude and reduced proper motion is applied to sample stars without considering the dispersion in magnitude. Correction factors for missing stars have been estimated according to their limits of proper motion which are dependent on the absolute magnitude. Resulting luminosity function shows Wielen's dip at $M_B{\sim}10$, and systematic enhancement of stars on the average of about ${\Delta}\log\;{\Phi}\;(M_B){\sim}0.2$ compared with Luyten's luminosity function.

  • PDF