• Title/Summary/Keyword: motion controlling

Search Result 339, Processing Time 0.025 seconds

Energy Saving Smart Illuminating System Implementation Based on Obstacle Environment Presetting (장애환경설정 기반의 에너지절약 지능형 조명시스템 구현)

  • Kim, Young Bin;Ryu, Conan K.R.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2786-2791
    • /
    • 2014
  • This paper describes the smart illuminating system based on the obstacle environmental presetting to improve the user convenience to easy lighting and energy conservation. Obstacle environment has trouble controlling the illuminating equipment using manual buttons in certain circumstances, which requires a smart remote controller. The smart remote controller is operated by the smart phone, motion sensor and timer to turn on and off the lamps. The event sensor module transmits the signals of the event occurrence to equipment on the remote place when smart phone and motion sensor detect an event, and the illuminator received the event turn on or off the lamp. The system results in energy saving by simple on/off control and manipulating the operating time with controlling the illuminating system preset by user's obstacle or preference circumstances. The proposed system implementation is experimented to figure out the energy saving about13.5w/h and the optimized convenience control.

Research of Mobile 3D Dance Contents Construction Using Motion Capture System (모션캡처 시스템을 이용한 모바일 3D 댄스 콘텐츠 제작 연구)

  • Kim Nam-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.9
    • /
    • pp.98-107
    • /
    • 2006
  • By improving performance of mobile machine(3D engine, 3D accelerator chip set, etc) and developing wireless network technology, a demand for actual contents of users is being increased rapidly. But, there are some difficulties yet for the speedy development of actual contents because of the limitation of development resources that is dependent on each mobile device's different performance. In general, much of the animated character-creation work for mobile environment is still done manually by experienced animator with the method of key frame processing. However, it needs a lot of time and more costs for creating motion. Additionally, it is possible to cause a distortion of motion. In this paper, I solved the difficulties by using a optical motion capture system, it was able to acquire accurate motion data more easily and quickly, and then it was possible to make 3D dance contents efficiently. Also, I showed techniques of key reduction and controlling frame number for using huge amounts of motion capture data in mobile environment which requires less resources. In making 3D dance contents, using an optical motion capture system was verified that it was more efficient to make and use actual-reality contents by creating actual character motion and by decreasing processing time than existing method.

  • PDF

Fatigue Life Prediction of Medical Lift Column utilizing Finite Element Analysis (유한요소해석을 통한 의료용 리프트 칼럼의 피로수명 예측)

  • Cheon, Hee-Jun;Cho, Jin-Rae;Yang, Hee-Jun;Lee, Shi-Bok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.337-342
    • /
    • 2011
  • Medical lift column controlling the vertical position while supporting heavy eccentric load should have the high fatigue strength as well as the extremely low structural deflection and vibration in order to maintain the positioning accuracy. The lift column driven by a induction motor is generally in a three-step sliding boom structure and exhibits the time-varying stress distribution according to the up-and-down motion. This study is concerned with the numerical prediction of the fatigue strength of the lift column subject to the time-varying stress caused by the up-and-down motion. The stress variation during a motion cycle is obtained by finite element analysis and the fatigue life is predicted making use of Palmgren-miner's rule and S-N curves. In order to secure the numerical analysis reliability, a 3-D FEM, model in which the detailed lift column structure and the fitting parts are fully considered, is generated and the interfaces between lift column and pads are treated by the contact condition.

The Development of a Real-Time Hand Gestures Recognition System Using Infrared Images (적외선 영상을 이용한 실시간 손동작 인식 장치 개발)

  • Ji, Seong Cheol;Kang, Sun Woo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1100-1108
    • /
    • 2015
  • A camera-based real-time hand posture and gesture recognition system is proposed for controlling various devices inside automobiles. It uses an imaging system composed of a camera with a proper filter and an infrared lighting device to acquire images of hand-motion sequences. Several steps of pre-processing algorithms are applied, followed by a background normalization process before segmenting the hand from the background. The hand posture is determined by first separating the fingers from the main body of the hand and then by finding the relative position of the fingers from the center of the hand. The beginning and ending of the hand motion from the sequence of the acquired images are detected using pre-defined motion rules to start the hand gesture recognition. A set of carefully designed features is computed and extracted from the raw sequence and is fed into a decision tree-like decision rule for determining the hand gesture. Many experiments are performed to verify the system. In this paper, we show the performance results from tests on the 550 sequences of hand motion images collected from five different individuals to cover the variations among many users of the system in a real-time environment. Among them, 539 sequences are correctly recognized, showing a recognition rate of 98%.

Controlling Particle Motion and Attribute Change by Fuzzy Control (퍼지제어에 의한 파티클 움직임 및 속성변화 제어)

  • Kang, Hwa-Seok;Choi, Seung-Hak;Eo, Kil-Su;Lee, Hong-Youl
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 1996
  • A particle system is defined as a collection of primitive particles that together represent irregular and ever-changing objects such as smoke, clouds, waterfalls, and explosions. A particle system can be a powerful tool for modeling a deformable object's motion and change of form since it has dynamic properties with time. As an object becomes more complicated and shows more chaotic behavior, however, we need much more parameters for describing its characteristics completely. Consequently, the conventional particle system leads to difficulty in managing all of the parameters properly since one parameter can affect the others. Moreover, motion equations for representing particles' behavior are usually approximated to gain speed-ups. The inevitable errors in calculating the equations can cause an unexpected outcome. In this paper, we present a new approach of applying fuzzy contol to mage particles' motion and attributes changes over time. We also give an implementation result of a fuzzy particle system to show the feasibility of the proposed method. Applications of the system to explosions, nebulae, volcanos, and grass are presented.

  • PDF

Modeling and optimal design of monolithic precision XYZ-stage using flexure mechanism (유연기구를 이용한 초정밀 단일체 3축 스테이지의 모델링 및 최적설계에 관한 연구)

  • Shim, Jong-Yeop;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.868-878
    • /
    • 1998
  • There are recently increasing needs for precision XYZ-stage in the fields of nanotechnology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). Force measurements are made in the AFM by monitoring the deflection of a flexible element (usually a cantilever) in response to the interaction force between the probe tip and the sample and controlling the force neasyred constant topography can be obtained. The power of the STM is based on the strong distance dependence of the tunneling current in the vacuum chamber and the current is a feedback for the tip to trace the surface topography. Therefore, it is required for XYZ-stage to position samples with nanometer resolution, without any crosscouples and any parasitic motion and with fast response. Nanometer resolution is essential to investigate topography with reasonable shape. No crosscouples and parasitic motion is essential to investigate topography without any shape distortion. Fast response is essential to investigate topography without any undesirable interaction between the probe tip and sample surface ; sample scratch. To satisfy these requirements, this paper presents a novel XYZ-stage concept, it is actuated by PZT and has a monolithic flexible body that is made symmetric as possible to guide the motion of the moving body linearly. PZT actuators have a very fast response and infinite resolution. Due to the monolithic structure, this XYZ-stage has no crosscouples and by symmetry it has no parasitic motion. Analytical modeling of this XYZ-stage and its verification by FEM modeling are performed and optimal design that is to maximize 1st natural frequencies of the stage is also presented and with that design values stage is manufactured.

On-line Motion Control of Avatar Using Hand Gesture Recognition (손 제스터 인식을 이용한 실시간 아바타 자세 제어)

  • Kim, Jong-Sung;Kim, Jung-Bae;Song, Kyung-Joon;Min, Byung-Eui;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.52-62
    • /
    • 1999
  • This paper presents a system which recognizes dynamic hand gestures on-line for controlling motion of numan avatar in virtual environment(VF). A dynamic hand gesture is a method of communication between a computer and a human being who uses gestures, especially both hands and fingers. A human avatar consists of 32 degree of freedom(DOF) for natural motion in VE and navigates by 8 pre-defined dynamic hand gestures. Inverse kinematics and dynamic kinematics are applied for real-time motion control of human avatar. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line dynamic hand gesture recognition.

  • PDF

An Analysis of Test Results Using the New Fusion Weight Conversion Algorithm for High-speed Weigh-In-Motion System (주행시험을 통한 고속축중기의 융합형 중량환산 알고리즘 효과 분석)

  • Kim, Jong Woo;Jung, Young Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.67-80
    • /
    • 2020
  • High-speed weigh in motion (HS-WIM) is a real-time unmanned system for measuring the weight of a freight-carrying vehicle while it is in motion without controlling vehicle traffic flow or deceleration. In Korea, HS-WIM systems are installed on the national highways and general national ways for pre-selection by law enforcement. In this study, to improve the measurement accuracy of HS-WIM, we devise improvements to the existing integral and peak weight conversion algorithms, and we provide a new fusion algorithm that can be applied to the mat-type HS-WIM. As a result of analyzing vehicle driving tests at a real site, we confirmed the highest level of weight-measuring accuracy.

An fMRI Study on the Differences in the Brain Regions Activated by an Identical Audio-Visual Clip Using Major and Minor Key Arrangements (동일한 영상자극을 이용한 장조음악과 단조음악에 의해 유발된 뇌 활성화의 차이 : fMRI 연구)

  • Lee, Chang-Kyu;Eum, Young-Ji;Kim, Yeon-Kyu;Watanuki, Shigeki;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.109-112
    • /
    • 2009
  • The purpose of this study was to examine the differences in the brain activation evoked by music arranged in major and minor key used with an identical motion film during the fMRI testing. A part of the audio-visual combinations composed by Iwamiya and Sano were used for the study stimuli. This audio- visual clip was originally developed by combining a small motion segment of the animation "The Snowman" and music arranged in both major and minor key from the original jazz music "Avalon" rewritten in a classical style. Twenty-seven Japanese male graduate and undergraduate students participated in the study. Brain regions more activated by the major key than the minor key when presented with the identical motion film were the left cerebellum, the right fusiform gyrus, the right superior occipital, the left superior orbito frontal, the right pallidum, the left precuneus, and the bilateral thalamus. On the other hand, brain regions more activated by the minor key than the major key when presented with the identical motion film were the right medial frontal, the left inferior orbito frontal, the bilateral superior parietal, the left postcentral, and the right precuneus. The study showed a difference in brain regions activated between the two different stimulus (i.e., major key and minor key) controlling for the visual aspect of the experiment. These findings imply that our brain systematically generates differently in the way it processes music written in major and minor key(Supported by the User Science Institute of Kyushu University, Japan and the Korea Science and Engineering Foundation).

  • PDF

Rotation control for the Yaw-direction of Unicycle Robot (외바퀴 로봇의 Yaw 방향 회전 제어)

  • Hwang, Jong-Myung;Bae, Dong-Suck;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.331-337
    • /
    • 2008
  • The field of robots is being widely accepted as a new technology today. Many robots are produced continuously to impart amusement to people. Especially the robot which operates with a wheelbarrow was enough of a work of art to arouse excitement in the audiences. All the wheelbarrow robots share the same technology in that the direction of roll and pitch are acting as balance controllers, allowing the robots to maintain balance for a long period by continuously moving forward and backward. However one disadvantage of this technology is that they cannot avoid obstacles in their way. Therefore movement in sideways is a necessity. For the control of rotation of yawing direction, the angle and direction of rotation are adjusted according to the velocity and torque of rotation of a motor. Therefore this study aimed to inquire into controlling yawing direction, which is responsible for rotation of a robot. This was followed by creating a simulation of a wheelbarrow robot and equipping the robot with a yawing direction controlling device in the center of the body so as to allow sideway movements.

  • PDF