• Title/Summary/Keyword: mosquito larvicidal activity

Search Result 17, Processing Time 0.024 seconds

Larvicidal Activity of Chamaecyparis obtusa and Thuja orientalis Leaf Oils against Two Mosquito Species

  • Jeon, Ju-Hyun;Lee, Sang-Hyun;Kim, Moo-Key;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.26-28
    • /
    • 2005
  • Evaluation of larvicidal activities of Chamaecyparis obtusa and Thuja orientalis oils against 4th-instar larvae of Aedes aegypti and Culex pipiens pallens revealed larvicidal activities of leaf oils extracted from C. obtusa and T. orientalis were significantly higher than those of stem, fruit, and seed oils. Strong mortality was observed in age class II of C. obtusa and T. orientalis against Ae. aegypti and Cx. pipiens pallens larvae. These results show both leaf part and age class II of C. obtusa and T. orientalis have strong larvicidal activity against Ae. aegypti and Cx. pipiens pallens. Leaf oils of C. obtusa and T. orientalis leaves show promise as natural larvicides against Ae. aegypti and Cx. pipiens pallens.

Chemical Compositions and Insecticidal Activity of Eucalyptus urophylla Essential oil Against Culex quinquefasciatus Mosquito

  • Pujiarti, Rini;Kasmudjo, Kasmudjo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.494-504
    • /
    • 2016
  • Eucalyptus oils are widely used as spices, perfume industrial materials, food flavorings, and medicines. Several types of Eucalyptus oils also have insecticidal activity and as carminative. This study investigated the chemical composition, insecticidal (larvicidal and repellent) activity of E. urophylla oil against filarial mosquito Culex quinquefasciatus. E. urophylla oil was obtained from fresh leaves by water-steam distillation with oil yield 1.08%. E. urophylla oil in this study had no color (clear), has odor (typical eucalyptus), with specific gravity 0.941; refractive index 1.465; miscibility in 70% ethanol 1 : 3; and optical rotation (-) $5.83^{\circ}$. The major compounds of the oil were ${\alpha}$-pinene (11.73%), 1,8-cineole (49.86%), ${\beta}$-ocimene (6.25%), ${\gamma}$-terpinene (9.11%), and ${\alpha}$-terpinyl acetate (7.63%). The result showed the excellent insecticide activity against C. quinquefasciatus. The oil provided larvicidal activity with $LC_{50}$: 80.21 ppm and $LC_{90}$: 210.18 ppm, and repellent activity with $IC_{50}$: 0.82% and $IC_{90}$: 4.88%. The present study showed the effectiveness of E. urophylla as natural insecticide against C. quinquefasciatus, the mosquito vector of filariasis.

Structurally Conserved Aromaticity of Tyr249 and Phe264 in Helix 7 Is Important for Toxicity of the Bacillus thuringiensis Cry4Ba Toxin

  • Tiewsiri, Kasorn;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.163-171
    • /
    • 2007
  • Functional elements of the conserved helix 7 in the poreforming domain of the Bacillus thuringiensis Cry $\delta$- endotoxins have not yet been clearly identified. Here, we initially performed alanine substitutions of four highly conserved aromatic residues, $Trp^{243}$, $Phe^{246}$, $Tyr^{249}$ and $Phe^{264}$, in helix 7 of the Cry4Ba mosquito-larvicidal protein. All mutant toxins were overexpressed in Escherichia coli as 130-kDa protoxins at levels comparable to the wild-type. Bioassays against Stegomyia aegypti mosquito larvae revealed that only W243A, Y249A or F264A mutant toxins displayed a dramatic decrease in toxicity. Further mutagenic analysis showed that replacements with an aromatic residue particularly at $Tyr^{249}$ and $Phe^{264}$ still retained the high-level toxin activity. In addition, a nearly complete loss in larvicidal activity was found for Y249L/F264L or F264A/ Y249A double mutants, confirming the involvement in toxicity of both aromatic residues which face towards the same direction. Furthermore, the Y249L/F264L mutant was found to be structurally stable upon toxin solubilisation and trypsin digestion, albeit a small change in the circular dichroism spectrum. Altogether, the present study provides for the first time an insight into the highly conserved aromaticity of $Tyr^{249}$ and $Phe^{264}$ within helix 7 playing an important role in larvicidal activity of the Cry4Ba toxin.

Pesticidal Constituents Derived from Piperaceae Fruits

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.65-74
    • /
    • 2005
  • Fungicidal, insecticidal, and mosquito larvicidal activities of piperidine alkaloids, pipernonaline and piperoctadecalidine, and isobutylamide alkaloids, pellitorine, guineensine, pipercide, and retrofractaminde A, derived from Piperaceae fruits were studied. Pipernonaline and piperoctadecalidine showed potent fungicidal activities against Puccinia recondita with 91 and 80% control values at 500 ppm. Against Phytophthora infestans, pipernonaline showed strong fungicidal activity with 91 and 80% control values at 1,000 and 500 ppm. $LD_{50}$ values of pipernonaline and piperoctadecalidine against Plutella xylostella were 125 and 95.5 ppm, respectively, and that of piperoctadecalidine against Tetranychus urticae was 246 ppm. Against larvae of Aedes aegypti and Culex pipiens pallens, $LD_{50}$ values of pipernonaline were 0.35 and 0.21 ppm, respectively. Highest larvicidal activities of pipercide and retrofractamide A were found against A. aegypti, A. togoi, and C. pipiens pallens. $LD_{50}$ values of pipercide and retrofractamide A were 0.10 and 0.039 ppm against A. aegypti, 0.26 and 0.01 ppm against A. togoi, and 0.004 and 0.028 ppm against C. pipiens pallens, respectively. Based upon these results and earlier findings, bioactive components derived from Piperaceae fruits may be valuable for development of useful lead product of possibly safer fungicidal, insecticidal, and mosquito larvicidal agents.

Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus

  • Kunthic, Thittaya;Promdonkoy, Boonhiang;Srikhirin, Toemsak;Boonserm, Panadda
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.674-679
    • /
    • 2011
  • Bacillus sphaericus produces mosquito-larvicidal binary toxin composed of BinA and BinB. While BinB is expected to bind to a specific receptor on the cell membrane, BinA interacts to BinB or BinB receptor complex and translocates into the cytosol to exert its activity via unknown mechanism. To investigate functional roles of aromatic cluster in BinA, amino acids at positions Y213, Y214, Y215, W222 and W226 were substituted by leucine. All mutant proteins were highly produced and their secondary structures were not affected by these substitutions. All mutants are able to insert into lipid monolayers as observed by Langmuir-Blodgett trough and could permeabilize the liposomes in a similar manner as the wild type. However, mosquito-larvicidal activity was abolished for W222L and W226L mutants suggesting that tryptophan residues at both positions play an important role in the toxicity of BinA, possibly involved in the cytopathological process after toxin entry into the cells.

Bacillus thuringiensis Cry4A and Cry4B Mosquito-larvicidal Proteins: Homology-based 3D Model and Implications for Toxin Activity

  • Angsuthanasombat, Chanan;Uawithya, Panapat;Leetachewa, Somphob;Pornwiroon, Walairat;Ounjai, Puey;Kerdcharoen, Teerakiat;Katzenmeier, Gerd;Panyim, Sakol
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.304-313
    • /
    • 2004
  • Three-dimensional (3D) models for the 65-kDa activated Cry4A and Cry4B $\delta$-endotoxins from Bacillus thuringiensis subsp. israelensis that are specifically toxic to mosquito-larvae were constructed by homology modeling, based on atomic coordinates of the Cry1Aa and Cry3Aa crystal structures. They were structurally similar to the known structures, both derived 3D models displayed a three-domain organization: the N-terminal domain (I) is a seven-helix bundle, while the middle and C-terminal domains are primarily comprise of anti-parallel $\beta$-sheets. Circular dichroism spectroscopy confirmed the secondary structural contents of the two homology-based Cry4 structures. A structural analysis of both Cry4 models revealed the following: (a) Residues Arg-235 and Arg-203 are located in the interhelical 5/6 loop within the domain I of Cry4A and Cry4B, respectively. Both are solvent exposed. This suggests that they are susceptible to tryptic cleavage. (b) The unique disulphide bond, together with a proline-rich region within the long loop connecting ${\alpha}4$ and ${\alpha}5$ of Cry4A, were identified. This implies their functional significance for membrane insertion. (c) Significant structural differences between both models were found within domain II that may reflect their different activity spectra. Structural insights from this molecular modeling study would therefore increase our understanding of the mechanic aspects of these two closely related mosquito-larvicidal proteins.

Intermolecular Interaction Between Cry2Aa and Cyt1Aa and Its Effect on Larvicidal Activity Against Culex quinquefasciatus

  • Bideshi, Dennis K.;Waldrop, Greer;Fernandez-Luna, Maria Teresa;Diaz-Mendoza, Mercedes;Wirth, Margaret C.;Johnson, Jeffrey J.;Park, Hyun-Woo;Federici, Brian A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1107-1115
    • /
    • 2013
  • The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that has evolved in Culex quinquefasciatus. It is also known that Cyt1Aa, which is highly lipophilic, synergizes Cry11Aa by functioning as a surrogate membrane-bound receptor for the latter protein. Little is known, however, about whether Cyt1Aa can interact similarly with other Cry proteins not primarily mosquitocidal; for example, Cry2Aa, which is active against lepidopteran larvae, but essentially inactive or has very low toxicity to mosquito larvae. Here we demonstrate by ligand binding and enzyme-linked immunosorbent assays that Cyt1Aa and Cry2Aa form intermolecular complexes in vitro, and in addition show that Cyt1Aa facilitates binding of Cry2Aa throughout the midgut of C. quinquefasciatus larvae. As Cry2Aa and Cry11Aa share structural similarity in domain II, the interaction between Cyt1Aa and Cry2Aa could be a result of a similar mechanism previously proposed for Cry11Aa and Cyt1Aa. Finally, despite the observed interaction between Cry2Aa and Cyt1Aa, only a 2-fold enhancement in toxicity resulted against C. quinquefasciatus. Regardless, our results suggest that Cry2Aa could be a useful component of mosquitocidal endotoxin complements being developed for recombinant strains of B. thuringiensis subsp. israelensis and B. sphaericus aimed at improving the efficacy of commercial products and avoiding resistance.

Functional characterizations of residues Arg-158 and Tyr-170 of the mosquito-larvicidal Bacillus thuringiensis Cry4Ba

  • Leetachewa, Somphob;Moonsom, Saengduen;Chaisri, Urai;Khomkhum, Narumol;Yoonim, Nonglak;Wang, Ping;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.546-551
    • /
    • 2014
  • The insecticidal activity of Bacillus thuringiensis (Bt) Cry toxins involves toxin stabilization, oligomerization, passage across the peritrophic membrane (PM), binding to midgut receptors and pore-formation. The residues Arg-158 and Tyr-170 have been shown to be crucial for the toxicity of Bt Cry4Ba. We characterized the biological function of these residues. In mosquito larvae, the mutants R158A/E/Q (R158) could hardly penetrate the PM due to a significantly reduced ability to alter PM permeability; the mutant Y170A, however, could pass through the PM, but degraded in the space between the PM and the midgut epithelium. Further characterization by oligomerization demonstrated that Arg-158 mutants failed to form correctly sized high-molecular weight oligomers. This is the first report that Arg-158 plays a role in the formation of Cry4Ba oligomers, which are essential for toxin passage across the PM. Tyr-170, meanwhile, is involved in toxin stabilization in the toxic mechanism of Cry4Ba in mosquito larvae.

Directed Mutagenesis of the Bacillus thuringiensis Cry11A Toxin Reveals a Crucial Role in Larvicidal Activity of Arginine-136 in Helix 4

  • Angsuthanasombat, Chanan;Keeratichamreon, Siriporn;Leetacheewa, Somphob;Katzenmeier, Gerd;Panyim, Sakol
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.402-407
    • /
    • 2001
  • Based on the currently proposed toxicity model for the different Bacillus thuringiensis Cry $\delta$-endotoxins, their pore-forming activity involves the insertion of the ${\alpha}4-{\alpha}5$ helical hairpin into the membrane of the target midgut epithelial cell. In this study, a number of polar or charged residues in helix 4 within domain I of the 65-kDa dipteranactive Cry11A toxin, Lys-123, Tyr-125, Asn-128, Ser-130, Gln-135, Arg-136, Gln-139 and Glu-141, were initially substituted with alanine by using PCR-based directed mutagenesis. All mutant toxins were expressed as cytoplasmic inclusions in Escherichia coli upon induction with IPTG. Similar to the wild-type protoxin inclusion, the solubility of each mutant inclusion in the carbonate buffer, pH 9.0, was relatively low When E. coli cells, expressing each of the mutant proteins, were tested for toxicity against Aedes aegypti mosquito-larvae, toxicity was completely abolished for the alanine substitution of arginine at position 136. However, mutations at the other positions still retained a high level of larvicidal activity Interestingly, further analysis of this critical arginine residue by specific mutagenesis showed that conversions of arginine-136 to aspartate, glutamine, or even to the most conserved residue lysine, also abolished the wild-type activity The results of this study revealed an important determinant in toxin function for the positively charged side chain of arginine-136 in helix 4 of the Cry11A toxin.

  • PDF