• Title/Summary/Keyword: morphological segmentation

Search Result 159, Processing Time 0.027 seconds

Microscopic Image-based Cancer Cell Viability-related Phenotype Extraction (현미경 영상 기반 암세포 생존력 관련 표현형 추출)

  • Misun Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2023
  • During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.

Fiber Classification and Detection Technique Proposed for Applying on the PVA-ECC Sectional Image (PVA-ECC단면 이미지의 섬유 분류 및 검출 기법)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.513-522
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC (Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device (CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

Fast Detection of Finger-vein Region for Finger-vein Recognition (지정맥 인식을 위한 고속 지정맥 영역 추출 방법)

  • Kim, Sung-Min;Park, Kang-Roung;Park, Dong-Kwon;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2009
  • Recently, biometric techniques such as face recognition, finger-print recognition and iris recognition have been widely applied for various applications including door access control, finance security and electric passport. This paper presents the method of using finger-vein pattern for the personal identification. In general, when the finger-vein image is acquired from the camera, various conditions such as the penetrating amount of the infrared light and the camera noise make the segmentation of the vein from the background difficult. This in turn affects the system performance of personal identification. To solve this problem, we propose the novel and fast method for extracting the finger-vein region. The proposed method has two advantages compared to the previous methods. One is that we adopt a locally adaptive thresholding method for the binarization of acquired finger-vein image. Another advantage is that the simple morphological opening and closing are used to remove the segmentation noise to finally obtain the finger-vein region from the skeletonization. Experimental results showed that our proposed method could quickly and exactly extract the finger-vein region without using various kinds of time-consuming filters for preprocessing.

Automatic Liver Segmentation of a Contrast Enhanced CT Image Using a Partial Histogram Threshold Algorithm (부분 히스토그램 문턱치 알고리즘을 사용한 조영증강 CT영상의 자동 간 분할)

  • Kyung-Sik Seo;Seung-Jin Park;Jong An Park
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of a pancreas in the abdomen. In this paper, an automatic liver segmentation method using a partial histogram threshold (PHT) algorithm is proposed for overcoming randomness of CE-CT images and removing the pancreas. After histogram transformation, adaptive multi-modal threshold is used to find the range of gray-level values of the liver structure. Also, the PHT algorithm is performed for removing the pancreas. Then, morphological filtering is processed for removing of unnecessary objects and smoothing of the boundary. Four CE-CT slices of eight patients were selected to evaluate the proposed method. As the average of normalized average area of the automatic segmented method II (ASM II) using the PHT and manual segmented method (MSM) are 0.1671 and 0.1711, these two method shows very small differences. Also, the average area error rate between the ASM II and MSM is 6.8339 %. From the results of experiments, the proposed method has similar performance as the MSM by medical Doctor.

Early Morphological Development of the Brown Croaker, Miichthys miiuy (Basilewsky): Fin Differentiation, Head Dimensions, and Squamation (민어, Miichthys miiuy의 초기 형태 발달: 지느러미 분화, 두부 계측 및 비늘 도포)

  • Park, In-Seok;Kim, Young-Ja;Goo, In-Bon;Kim, Dong-Soo
    • Korean Journal of Ichthyology
    • /
    • v.24 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • We describe early morphological development in laboratory-reared specimens of the brown croaker, Miichthys miiuy, in relation to fin differentiation, head dimensions, and squamation. From the yolk sac stage to the flexion larval stage (a period of 12 days following hatching, at which time the larvae were <4.2 mm in total length; TL) we observed the presence of a fin-fold around the body, while the caudal fin appeared rounded and lacked scales. Rays developed in the dorsal, anal, and pectoral fins in a process that was almost complete in larvae 12 days, while ray segmentation occurred between 26 and 29 days of age. Elongation of the middle rays of the caudal fin was initiated at 32 days, and the rays were remarkably elongated by 37 days. By 68 days the caudal fin was lanceolated (50.7 mm TL). Scales began to develop from the midlateral lines of the caudal peduncle at 9.1mm TL (28 days), eventually encompassing the entire operculum (22.1 mm TL; 44 days). The head dimensions were largely stabilized at >12 mm TL (30 day).

An Automatic Mobile Cell Counting System for the Analysis of Biological Image (생물학적 영상 분석을 위한 자동 모바일 셀 계수 시스템)

  • Seo, Jaejoon;Chun, Junchul;Lee, Jin-Sung
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • This paper presents an automatic method to detect and count the cells from microorganism images based on mobile environments. Cell counting is an important process in the field of biological and pathological image analysis. In the past, cell counting is done manually, which is known as tedious and time consuming process. Moreover, the manual cell counting can lead inconsistent and imprecise results. Therefore, it is necessary to make an automatic method to detect and count cells from biological images to obtain accurate and consistent results. The proposed multi-step cell counting method automatically segments the cells from the image of cultivated microorganism and labels the cells by utilizing topological analysis of the segmented cells. To improve the accuracy of the cell counting, we adopt watershed algorithm in separating agglomerated cells from each other and morphological operation in enhancing the individual cell object from the image. The system is developed by considering the availability in mobile environments. Therefore, the cell images can be obtained by a mobile phone and the processed statistical data of microorganism can be delivered by mobile devices in ubiquitous smart space. From the experiments, by comparing the results between manual and the proposed automatic cell counting we can prove the efficiency of the developed system.

A Segmentation Method for Counting Microbial Cells in Microscopic Image

  • Kim, Hak-Kyeong;Lee, Sun-Hee;Lee, Myung-Suk;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.224-230
    • /
    • 2002
  • In this paper, a counting algorithm hybridized with an adaptive automatic thresholding method based on Otsu's method and the algorithm that elongates markers obtained by the well-known watershed algorithm is proposed to enhance the exactness of the microcell counting in microscopic images. The proposed counting algorithm can be stated as follows. The transformed full image captured by CCD camera set up at microscope is divided into cropped images of m$\times$n blocks with an appropriate size. The thresholding value of the cropped image is obtained by Otsu's method and the image is transformed into binary image. The microbial cell images below prespecified pixels are regarded as noise and are removed in tile binary image. The smoothing procedure is done by the area opening and the morphological filter. Watershed algorithm and the elongating marker algorithm are applied. By repeating the above stated procedure for m$\times$n blocks, the m$\times$n segmented images are obtained. A superposed image with the size of 640$\times$480 pixels as same as original image is obtained from the m$\times$n segmented block images. By labeling the superposed image, the counting result on the image of microbial cells is achieved. To prove the effectiveness of the proposed mettled in counting the microbial cell on the image, we used Acinetobacter sp., a kind of ammonia-oxidizing bacteria, and compared the proposed method with the global Otsu's method the traditional watershed algorithm based on global thresholding value and human visual method. The result counted by the proposed method shows more approximated result to the human visual counting method than the result counted by any other method.

Embryological Studies on Somitogenesis of Early Chick Embryos by heat shock and treatments of ${\alpha}$-amanitin and cycloheximide (열충격 및 ${\alpha}$-amanitin과 cycloheximide의 처리를 통한 초기 계배의 체절 형성 기작에 대한 발생학적 연구)

  • Choe, Rim-Soon;Park, Yong-Bin;Kim, Ok-Yong
    • Applied Microscopy
    • /
    • v.21 no.2
    • /
    • pp.1-13
    • /
    • 1991
  • In order to investigate the factors of the control mechanism of somitogenesis, early chick embryos (H-H stage $8{\sim}13$) were treated with heat shock, ${\alpha}$-amanitin and cycloheximide and morphological changes of somite were examined by light microscopy, transmission and scanning electron microscopy. In normal chick embryo, somites were formed from the somitomere which preexisted in segmental plate. Somites were wrapped with extracellular collagen fibrils and connected with neural tube, notochord and ectoderm. And then, somites were differentiated to sclerotome, dermatome and myotome by the interaction of nervous tissue. Abnormal somites were observed after formation of six or seven so mites in heat shock treated group. Amounts of collagen fibrils were obviously decreased in this group. In cycloheximide treated group, most so mites were smaller and neural tube formation was incomplete. Chromatins were condenced and formed several heterochromatins in the nucleus of somite cells. Lipid like cytoplasmic dense mass and lipid droplets were also observed. Segmentation of somites seemed to be normal progress in ${\alpha}$-amanitin treated group. Center of somite, however, hollowed in longitudinal sectioned samples. These results suggested that so mites were already existed in the segmental plate as the form of somitomere. Segmented somites were contacted with neural tube or notochord and the somites were tightly connected with each other by the extracellular collagen fibrils which were secreted from neuroepithelium and somite cells. Somites are thought to differentiate into sclerotome, dermatome and myotome by these interactions.

  • PDF

Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor (위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류)

  • Kang, Mi-Sun;Lee, Jeong-Eom;Kim, Hye-Ryun;Kim, Myoung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

Text Region Detection Method in Mobile Phone Video (휴대전화 동영상에서의 문자 영역 검출 방법)

  • Lee, Hoon-Jae;Sull, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.192-198
    • /
    • 2010
  • With the popularization of the mobile phone with a built-in camera, there are a lot of effort to provide useful information to users by detecting and recognizing the text in the video which is captured by the camera in mobile phone, and there is a need to detect the text regions in such mobile phone video. In this paper, we propose a method to detect the text regions in the mobile phone video. We employ morphological operation as a preprocessing and obtain binarized image using modified k-means clustering. After that, candidate text regions are obtained by applying connected component analysis and general text characteristic analysis. In addition, we increase the precision of the text detection by examining the frequency of the candidate regions. Experimental results show that the proposed method detects the text regions in the mobile phone video with high precision and recall.