After detecting the edge which is applying the morphological operators to the hybrid FCNN, we could analyze and compare. The hybrid FCNN is completely removed to the noise in the image, and worked in order to obtain the result image which is closest to the original image. Also, the morphological operator is applied to the image as the method in order to detect more good the edge than the conventional edge. FCNN which is the pipeline type is completely suitable to detecting the image processing as well as the hardware size. In this paper. we would make the structure elements of the morphological operator the variable template and the static template, and compare with the edge enhancement of two images. After being the result which is applying the variable template morphological operator and the static template morphological operator to the image, we could know that the edge images applying the variable template is superior in a edge enhancement side.
이 연구에서는 형태학적 연산(Morphological Operator)과 CNN (Convolutional Neural Networks)의 개념을 결합하여 이미지 변환을 개선하고자 한다. 이를 위해서 형태학적 연산을 근사할 수 있는 연산을 제안한다. 그리고 제안한 연산을 CNN처럼 여러 필터를 사용할 수 있게 확장한 S-Convolution을 제안한다. 실험 결과 제안한 연산은 형태학적 연산을 학습할 수 있었다. 그리고 제안한 연산의 이미지 변환 성능을 검증하기 위해 GAN에 적용하여 실험하였다. 그 결과 S-Convolution이 기존 CNN을 사용한 GAN과 다른 변환이 가능하다는 것을 볼 수 있었다.
본 논문에서는 동영상 압축 기법을 향상시키기 위하여 효율적인 detail 추출 기법을 제안한다. 기존의 top-hat 변환을 이용한 기법은 고립되어 있고 시각적으로 중요한 detail의 추출에는 효율적이지만, 영역의 경계에서는 비효율적이다. 제안된 기법은 수리형태학적 Laplacian 연산의 영역경계 정보추출의 성질을 이용하여 압축을 향상시키고 저비트율을 제공한다. 실험결과를 통해서 제안된 기법이 기존 기법보다 효율적임을 보이고 수리형태학적 Laplacian 연산 적용의 타당성을 설명한다.
본 논문에서는 영역 기반 부호화를 위해 영상 분할 과정에서 요구되는 수리형태학 기반의 새로운 Connected Operator를 제안한다 참조 영상(Reference Image)의 선택에 있어 크기와 대조를 동시에 고려하는 효과적인 참조 영상 선택 방법을 제안한다 이는 시각적으로 중요한 요소를 보존하고 불필요한 영역은 제거함으로써 단순화 성능을 높일 수 있다 또한 기존 Connected Operator는 작은 크기의 요소들에 대해서는 좋은 결과를 보이지만 정의된 요소보다 크고 천천히 변화하는 영역에 대해서는 인접영역의 간섭으로 인해 단순화의 효과가 상당히 떨어지게 된다는 문제점이 있다 이를 보완하기위해 기존의 Geodesic Dilation 방법을 적응적으로 개선시키기 위해 원영상으로 복원된 화소는 연산과정에서 제외시킨다 제안하는 참조 영상 선택의 기준과 개체 영역을 고려한 개선된 Geodesic Dilation을 이용하여 크기와 대조를 고려한 새로운 Connected Operator를 제안한다. 제안하는 알고리즘은 중요 요소의 제거를 줄이고 화질을 개선시키며, 지역 최대/최소(Regional Maximum/Minimum)인 커다란 영역으로부터 발생하는 방해를 효과적으로 줄일 수 있다 실험 결과에 대한 주관적 평가에서 동일한 조건의 경우 제안하는 알고리즘이 기존 알고리즘보다 평탄면 생성이 더 우수함을 보였으며, 특히 객관적인 평가에서는 같은 영역 개수에 대해 기존의 연산자보다 평균 7dB정도 우수함을 확인하였다.
In this paper, we propose a new connected operator using morphological grayscale reconstruction for region-based coding. First, an effective method of reference-image creation is proposed, which is based on the size as well as the contrast. The conventional connected operators are good for removing small regions, but have a serious drawback for low-contrast regions that are larger than the structuring element. That is, when the conventional connected operators are applied to these regions. the simplification becomes less effective or several meaningful regions are merged to one region. To avoid this, the conventional geodesic dilation is modified to propose an adaptive operator. To reduce the effect of inappropriate propagation, pixels reconstructed to the original values are excluded in the dilation operation. Experimental results have shown that the proposed algorithm achieves better performance in terms of the reconstruction of flat zones. The picture quality has also been improved by about 7dB, compared to the conventional methods.
In this paper, we present an improved multi-scale gradient algorithm. The proposed algorithm works the effectively handling of both step and blurred edges. In the proposed algorithm, the image sharpening operator is sharpening the edges and contours of the objects. This operation gives an opportunity to get noise reduced image and step edged image. After that, multi-scale gradient operator works on noise reduced image in order to get a gradient image. The gradient image is segmented by watershed transform. The approach of region merging is used after watershed transform. The region merging is carried out according to the region area and region homogeneity. The region number of the proposed algorithm is 36% shorter than that of the existing algorithm because the proposed algorithm produces a few irrelevant regions. Moreover, the computational time of the proposed algorithm is relatively fast in comparison with the existing one.
In this paper, the importance of including small image features at the initial levels of a progressive second generation video coding scheme is presented. It is shown that a number of meaningful small features called details shouuld be coded in order to match their perceptual significance to the human visual system. We propose a method for extracting, perceptually selecting and coding of visual details in a video sequence using morphological laplacian operator and modified post-it transform is very efficient for improving quality of the reconstructed images.
This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.
본 논문에서는 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안하였다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화한다. 이진화된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다. 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 추출되어 결합된 개별 문자 및 숫자 코드들은 ART2 알고리즘에 적용하여 학습 및 인식된다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식기법이 효율적임을 확인하였다.
본 논문에서는 영역 기반 부호화를 위해 수리형태학 연산자를 이용한 영역 분할 알고리즘을 제안한다. 수리형태학을 이용한 영상 분할은 단순화, 마커 추출, 영역 결정의 세 단계로 구성된다. 단순화 단계는 분할을 용이하게 하기 위하여 영상의 복잡한 부분들을 제거하는 단계이고, 마커 추출단계는 단순화 과정을 거친 영상으로부터 각 영역의 초기 기준 영역을 찾는 과정이다. 영역 결정단계는 추출된 마커로부터 각 영역의 경계를 결정하는 단계이다. 단순화를 위해 기존 평탄면 필터를 효과적으로 개선한 크기와 대조를 고려한 효과적인 Connected Operator를 사용한다. 마커 추출 과정에서 원영상으로 복원된 영역은 제외시키고 나머지 부분에서 크기와 대조가 일정값 이상인 영역을 마커로 결정한다. 생성된 모든 마커와 Hierarchical Watershed algorithm을 이용하여 초기 영상 분할을 하고 영역 병합과정에서는 영역 수에 대한 화질의 저하를 최소로 하는 영역 병합 알고리즘을 제안한다. 동시에, 시각적 특성을 고려하여 일정 대조 이상인 영역 쌍은 병합에서 제외시킨다. 실험 결과에서 제안된 마커 추출 방법이 화질을 많이 저하시키지 않는 범위 내에서 적은 수의 마커를 추출하며, 영역 병합과정을 통해 많은 불필요한 영역들을 병합할 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.