• 제목/요약/키워드: monosaccharide

검색결과 136건 처리시간 0.022초

Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea

  • Jeon, Seon-Mi;Kim, Ji Hyung;Kim, Taeho;Park, Areumi;Ko, Ah-Ra;Ju, Se-Jong;Heo, Soo-Jin;Oh, Chulhong;Affan, Md. Abu;Shim, Won-Bo;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.723-731
    • /
    • 2015
  • Microalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics. Microscopic and phylogenetic analyses demonstrated that the isolate could be classified into the genus Chlamydomonas, and we designated the isolate Chlamydomonas sp. KIOST -1. Compositions of protein, lipid, and carbohydrate in the microalgal cells were estimated to be 58.8 ± 0.2%, 22.7 ± 1.2%, and 18.5 ± 1.0%, respectively. Similar to other microalgae belonging to Chlorophyceae, the dominant amino acid and monosaccharide in Chlamydomonas sp. KIOST-1 were glutamic acid and glucose. On the other hand, the proportions of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids clearly differed from other species in the genus Chlamydomonas, and monounsaturated fatty acids accounted for a large portion (41.3%) of the total fatty acids in the isolate. Based on these results, Chlamydomonas sp. KIOST-1 has advantageous characteristics for biomass production.

목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계 (Design of Pretreatment Process in Cellulosic Ethanol Production)

  • 김형진;이승범
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.511-514
    • /
    • 2015
  • 차세대 바이오에탄올로 주목받고 있는 목질계 바이오매스를 이용한 셀룰로오스 에탄올 생산과정은 셀룰로오스를 단당류로 분해하는 전처리과정이 가장 중요한 역할을 한다. 본 연구에서는 산가수분해와 효소당화과정을 이용하여 볏짚, 톱밥, 복사지, 신문지 등과 같은 목질계 바이오매스로부터 셀룰로오스에탄올을 제조하였다. 전처리과정으로 10~30 wt% 황산을 이용한 산가수분해($100^{\circ}C$, 1 h), celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), spirizyme ($60^{\circ}C$, pH = 4.2)을 이용한 효소당화과정(30 min), 산가수분해 후 효소당화과정을 비교하였다. 전처리과정의 수율은 hybrid 과정 > 산가수분해 > 효소당화 순으로 셀룰로오스 에탄올로의 전환이 잘 이루어지는 것으로 나타났으며, 최적 발효시간은 2일이었다. 또한 20 wt% 황산을 이용한 산가수분해 후 celluclast를 이용하여 효소당화를 수행할 경우 톱밥 > 볏짚 > 복사지 > 신문지 순으로 셀룰로오스 에탄올 전환특성이 높게 나타났다.

Effects of Mono- and Polysaccharides on In Vitro Fertility of Boar Spermatozoa

  • Hwang, In-Sun;Cheong, Hee-Tae;Yang, Boo-Keun;Kim, Choung-Ik;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • 제31권2호
    • /
    • pp.115-120
    • /
    • 2007
  • This study was conducted to examine the effect of several saccharides on the induction of capacitation and acrosome reaction (AR) and to examine the effects of mono and polysaccharides on the penetration activity of boar spermatozoa. Spermatozoa were inseminated in medium with fucose, galactose and mannose as monosaccharide, and fucoicIan. galactan and marman as polysaccharide. The penetration rates were significantly (p<0.05) lower in medium with galactose (40.6%), mannose (38.1%), fucose (41.6%) and fucoidan (36.6%) compared with control (56.7%). The rates of AR were increased (40.7 to 59.8%) by the preincubation periods prolonged from 0 to 4 hr (p<0.05). Similar tendencies were observed in AR when spermatozoa were treated with monosaccharides, but not significantly differ among the groups treated with different time of preincubation with some exception of galactose. When spermatozoa were treated with polysaccharides, the rates of AR were significantly (p<0.05) increased by preincubation time prolonged from 0 to 4 hr with an exception of fucoidan. In conclusion, the present study suggests that penetration rate of spermatozoa is higher in presence of polysaccharides than monosaccharides. Also, it may resume that the comparing to control, the all saccharides (L-fucose, D-galactose, D-mannose, fucoidan. galactan and mannan)-treated groups slightly increase the AR pattern as preincubation time prolonged.

Biochemical Characteristics and Function of a Fucosyltransferase Encoded by ste7 in Ebosin Biosynthesis of Streptomyces sp. 139

  • Chang, Ming;Bai, Li-Ping;Shan, Jung-Jie;Jiang, Rong;Zhang, Yang;Guo, Lian-Hong;Zhang, Ren;Li, Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1092-1097
    • /
    • 2009
  • A novel exopolysaccharide named Ebosin was produced by Streptomyces sp. 139, with medicinal activity. Its biosynthesis gene cluster (ste) has been previously identified. For the functional study of the ste7 gene in Ebosin biosynthesis, it was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-7m produced by the mutant strain Streptomyces sp. 139 ($ste7^-$) was found altered from that of Ebosin, with fucose decreasing remarkably. For biochemical characterization of Ste7, the ste7 gene was cloned and expressed in Escherichia coli BL21. With a continuous coupled spectrophotometric assay, Ste7 was demonstrated to have the ability of catalyzing the transfer of fucose specifically from GDP-$\beta$-L-fucose to a fucose acceptor, the lipid carrier located in the cytoplasmic membrane of Streptomyces sp. 139 ($ste7^-$). Therefore, the ste7 gene has been identified to code for a fucosyltransferase, which plays an essential role in the formation of repeating sugars units during Ebosin biosynthesis.

Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis

  • Ra, Chae Hun;Jung, Jang Hyun;Sunwoo, In Young;Kang, Chang Han;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.856-862
    • /
    • 2015
  • The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m2/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharide from the Fruiting Body of Cordyceps militaris

  • Lee, Jong-Seok;Kwon, Jeong-Seok;Won, Dong-Pil;Lee, Jung-Hyun;Lee, Keun-Eok;Lee, Shin-Young;Hong, Eock-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1053-1060
    • /
    • 2010
  • Cordyceps militaris, an entomopathogenic fungus belonging to the class Ascomycetes, has been reported to have beneficial biological activities such as hypoglycemic, anti-inflammatory, antitumor, antimetastatic, hypolipidemic, immunomodulatory, and antioxidant effects. In this study, the crude water-soluble polysaccharide CMP, which was obtained from the fruiting body of C. militaris by hot water extraction and ethanol precipitation, was fractionated by DEAE-cellulose and Sepharose CL-6B column chromatographies. This process resulted in three polysaccharide fractions, termed CMP Fr I, CMP Fr II, and CMP Fr III. Of these fractions, CMP Fr II, with an average molecular mass of 127 kDa, was able to upregulate effectively the phenotypic functions of macrophages such as NO production and cytokine expression. The chemical property of the stimulatory polysaccharide, CMP Fr II, was determined based on its monosaccharide composition, which consisted of glucose (56.4%), galactose (26.4%), and mannose (17.2%). Its structural characteristics were investigated by a combination of chemical and instrumental analyses, including methylation, reductive cleavage, acetylation, Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GCMS). Results indicated that CMP Fr II consisted of the (1${\rightarrow}$4) or (1${\rightarrow}$2) linked glucopyranosyl or galactopyranosyl residue with a (1${\rightarrow}$2) or (1${\rightarrow}$6) linked mannopyranosyl, glucopyranosyl, or galactopyranosyl residue as a side chain. The configuration of the ${\beta}$-linkage and random coil conformation of CMP Fr II were confirmed using a Fungi-Fluor kit and Congo red reagent, respectively.

프로바이오틱스의 동결보호 및 장관안정성 개선을 위한 첨가제 효과 분석 (Analysis of Ingredient Mixtures for Cryoprotection and Gastrointestinal Stability of Probiotics)

  • 정은지;문대원;오준석;문진석;김광엽;최혜선;한남수
    • KSBB Journal
    • /
    • 제30권3호
    • /
    • pp.109-113
    • /
    • 2015
  • Current drying and encapsulation methods for probiotics manufacturing are complicate and cost-burdened processes. The aim of this study was to develop a simple ingredient mixture to make probiotic granules via one-step process, providing not only a cryoprotective effect during freezing and drying but also high survival ratio in gastrointestinal tract. As cryoprotectans, commercially available ingredients including skim milk, monosaccharide (trehalose or glycerin), maltodextrins (with low or high degree of equivalents) were used. Their cryoprotective effect during lyophilization and survival ratios in artificial gastric juice and bile salt were measured against 3 strains of lactic acid bacteria (LAB) (Lactobacillus plantarum, Lb. brevis, and Lactococcus lactis). As results, 3 mixtures with different compositions showed a cryprotective effect on LAB tested and the best compostion was dependant upon LAB; skim milk 10%, trehalose 15%, glycerin 0.5%, and NaCl 1% was for Lb. plantarum and Lc. lactis, and maltodextrin 10% instead of skim milk was for Lb. brevis. In addition, those mixtures showed similar survival effect on LAB tested. These results demonstrate that skim milk or maltodextrins with trehalose, glycerin, and NACl can be effectively used for onestep lyophilization of LAB as an alternative method of encapsulation.

Purification and Anticoagulant Activity of a Fucoidan from Korean Undaria pinnatifida Sporophyll

  • Kim , Woo-Jung;Kim, Sung-Min;Kim, Hyun-Guell;Oh, Hye-Rim;Lee, Kyung-Bok;Lee, Yoo-Kyung;Park, Yong-Il
    • ALGAE
    • /
    • 제22권3호
    • /
    • pp.247-252
    • /
    • 2007
  • Crude fucoidan was extracted from the sporophyll of Korean Undaria pinnatifida collected at a coastal area ofWando, Korea, mainly by dilute acid extraction, ethanol precipitation, CaCU Precipitation, with an yield of approxi-mately 3.9% in mass. It was further purified by DEAE-cellulose column chromatography and its chemical composi-don and in vitro anticoagulant activity was determined. The average molecular mass of the purified fucoidan wasestimated about 2.1 x 103 kDa by size-fractionation HPLC and it consisted of neutral sugar (52.34% in mass), uronicacid (26.2%), and sulfate esters (7.4%). From the HPAEC-PAD analysis, the monosaccharide composition of thepurified fucoidan was shown to be fucose, galactose, xylose, and mannose, with a molar ratio of 1, 0.2, 0.02, 0.15,respectively, demonstrating that major monosacd-iande was fucose (72.3% in mol percentage) and other sugars,xylose (1.5%), galactose (14.6%), and mannose (10.9%) were present as minor component. The results suggested thatthis fucoidan is a sulfated, U-type fucoidan. The activated partial thrombloplastin time (APTT) assay of the purifiedfucoidan showed that the purified fucoidan elicited anticoagulant activity in a dose-dependent manner. Five jUg ofsporophyll fucoidan delayed the blood clotting time up to 5 times than untreated control and also up to 1.5 timesthan the same amount of the commercial fucoidan, respectively. Although it is preliminary, these results suggestthat the fucoidan of Korean Undaria vinnatifida sporophyll would be promising candidates for the development ofan anticoaeulant.

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • 이은정
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2007년도 춘계학술발표회
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.