DOI QR코드

DOI QR Code

Purification and Anticoagulant Activity of a Fucoidan from Korean Undaria pinnatifida Sporophyll

  • Kim , Woo-Jung (Department of Biotechnology and The Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Kim, Sung-Min (Department of Biotechnology and The Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Kim, Hyun-Guell (Department of Biotechnology and The Biomaterial Engineering Research Center, The Catholic University of Korea) ;
  • Oh, Hye-Rim (Department of Biochemistry, Konyang university, Konyang University Hospital) ;
  • Lee, Kyung-Bok (Department of Biochemistry, Konyang university, Konyang University Hospital) ;
  • Lee, Yoo-Kyung (Polar BioCenter, Korea Polar Research Institute, KORDI) ;
  • Park, Yong-Il (Department of Biotechnology and The Biomaterial Engineering Research Center, The Catholic University of Korea)
  • Published : 2007.09.01

Abstract

Crude fucoidan was extracted from the sporophyll of Korean Undaria pinnatifida collected at a coastal area ofWando, Korea, mainly by dilute acid extraction, ethanol precipitation, CaCU Precipitation, with an yield of approxi-mately 3.9% in mass. It was further purified by DEAE-cellulose column chromatography and its chemical composi-don and in vitro anticoagulant activity was determined. The average molecular mass of the purified fucoidan wasestimated about 2.1 x 103 kDa by size-fractionation HPLC and it consisted of neutral sugar (52.34% in mass), uronicacid (26.2%), and sulfate esters (7.4%). From the HPAEC-PAD analysis, the monosaccharide composition of thepurified fucoidan was shown to be fucose, galactose, xylose, and mannose, with a molar ratio of 1, 0.2, 0.02, 0.15,respectively, demonstrating that major monosacd-iande was fucose (72.3% in mol percentage) and other sugars,xylose (1.5%), galactose (14.6%), and mannose (10.9%) were present as minor component. The results suggested thatthis fucoidan is a sulfated, U-type fucoidan. The activated partial thrombloplastin time (APTT) assay of the purifiedfucoidan showed that the purified fucoidan elicited anticoagulant activity in a dose-dependent manner. Five jUg ofsporophyll fucoidan delayed the blood clotting time up to 5 times than untreated control and also up to 1.5 timesthan the same amount of the commercial fucoidan, respectively. Although it is preliminary, these results suggestthat the fucoidan of Korean Undaria vinnatifida sporophyll would be promising candidates for the development ofan anticoaeulant.

Keywords

References

  1. Anderson L.O., Barrowcliffe T.W., Holmer E., Johnson E.A and Sims G.E.G. 1976. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antitrombin III and gelfiltrations. Thromb. Res. 9: 575-580 https://doi.org/10.1016/0049-3848(76)90105-5
  2. Beress A, Wassermann O., Bruhn T. and Beress L. 1993. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J. Nat. Prod. 56: 478-488 https://doi.org/10.1021/np50094a005
  3. Berteau a. and Mulloy B. 2003. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharides. Glycobiology 13: 29R-40R https://doi.org/10.1093/glycob/cwg058
  4. Bitter T. and Muir H.M. 1962. A modified uronic acid carbazole reaction, Anal. Biochem. 4: 330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  5. Boisson-Vid al C.; Chaubet F., Chevolot L., Sinquin C.; Theveniaux J., Millet J., Sternberg C., Mulloy B. and Fischer A.M. 2000. Relationship between antithrombotic activities of fucans and their structure. Drug Devel. Res. 51: 216-224 https://doi.org/10.1002/ddr.2
  6. Bradford M.M. 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Chevolot L., Foucault A, Chaubet F., Kervarec N., Sinquin C; Fisher A.M. and Boisson-Vidal C. 1999. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohyd. Res. 319: 154-165 https://doi.org/10.1016/S0008-6215(99)00127-5
  8. Colliec S., Boisson-Vidal C. and Jozefonvicz J. 1994. A low molecular weight fucoidan fraction from the brown seaweed Pelvetia caniculata. Phytochem. 35: 697-700 https://doi.org/10.1016/S0031-9422(00)90590-9
  9. Daniel R., Berteau a., Jozefonvicz J. and Goasdoue N. 1999. Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohyd. Res. 322: 291-297 https://doi.org/10.1016/S0008-6215(99)00223-2
  10. Dubois M., Gilles K. A, Hamilton J. K, Rebers P.A. and Smith F. 1956. A colorimeteric method for determination of sugars and related substances. Analysis Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  11. Fisher K.G. 2007. Essentials of anticoagulation in hemodialysis. Hemodialysis International 11: 178-189 https://doi.org/10.1111/j.1542-4758.2007.00166.x
  12. Hahnenberger Rand [akobson A.M. 1991. Antiangiogenic effect of sulphated glycosaminoglycans and polysaccharides in the chick embryo chorioallantoic membrane. Glycoconjugate J. 8: 350-353 https://doi.org/10.1007/BF00731347
  13. Hoshino T., Hayashi T., Hayashi L Lee J.B. and Sankawa U. 1998. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. BioI. Pharm. Bull. 21: 730-734 https://doi.org/10.1248/bpb.21.730
  14. Kim D.S., Lim D.J., Moon S.H., Suh H.H. and Park Y.I. 2004. Purification of fucoidan from Korean sea tangle (Laminaria religosa) and isolation of fucoidan degrading microorganisms. Kor. J. Microbiol. Biotechnol. 32: 362-365
  15. Koo J.G., Jo K.S., Do J.R and WOO S.J. 1995. Ioslation and purification of fucoidans from Laminaria religiosa and Undaria pinnatifida in Korea. J. Korean Fish. Soc. 28: 227-236
  16. Lee Y.K, Lim D.J., Lee Y.H. and Park Y.I. 2006. Variation in fucoidan contents and monosaccharide compositions of Korean Undaria pinnatifida (Harvey) Suringar (Phaeophyta). Algae 21: 157-160 https://doi.org/10.4490/ALGAE.2006.21.1.157
  17. Loui J.S., Robert E.H., Leigh S. and Juanita M.S. 1982. Analysis of sulfate in complex carbohydrates. Anal. BioChem. 123: 303-309 https://doi.org/10.1016/0003-2697(82)90450-X
  18. McCandless E.L. and Craigie J.S. 1979. Sulfated polysaccharides in red and brown algae. Annu. Rev. Plant Physiol. 30: 41-67 https://doi.org/10.1146/annurev.pp.30.060179.000353
  19. McClure M.O., Moore J.P., Blanc D.F., Scotting P., Cook G.M., Keynes R.J., Weber J.N., Davies D. and Weiss R.A 1992. Investigation into the mechanism by which sulfated polysaccharides inhibit HIV- infection in vitro. AIDS Res. Hum. Retrov. 8: 19-26 https://doi.org/10.1089/aid.1992.8.19
  20. Millet J., Jouault S.C.. Mauray S., Theveniaux J., Sternberg C. Boisson V.C. and Fischer A.M. 1999. Antithrombotic and anticoagulant activities of a low molecular weight fucoidan by the subcutaneous route. Thromb. Haemost. 81: 391-395 https://doi.org/10.1055/s-0037-1614484
  21. Mori H., Kamei H., Nishide E. and Nisizawa K 1982. Sugar constituents of some sulfated polysaccharides from the sporophylls of wakame (Undaria pinnatifida) and their biological activities. In: Marine algae in pharmaceutical science. Walter de Cruyter, Berlin and New York. pp. 109-121
  22. Mourao P.A.S. and Pereira M.S. 1999. Searching for alternatives to heparin: sulfated fucans from marine invertebrates. Trends Cardiovasc. Med. 9: 225-232 https://doi.org/10.1016/S1050-1738(00)00032-3
  23. Nishino T. and Nagumo H. 1991. Structural characterization of a new anticoagulant fucan sulfate from the brown seaweed Ecklonia kurome. Carbohyd. Res. 30: 535-539
  24. Nishino T., Nishioka C, Ura H. and Nagumo T. 1994. Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res. 255: 213-224 https://doi.org/10.1016/S0008-6215(00)90980-7
  25. Nishino T., Fukuda A., Nagumo T. Fujihara M. and Kaji E. 1999. Inhibition of the generation of thrombin and factor Xa by a fucoidan from the brown seaweed Ecklonia kurome. Thromb. Res. 96: 37-49 https://doi.org/10.1016/S0049-3848(99)00060-2
  26. Ostergaard c., Yieng-Kow R.V., Benfield T., Frimodt-Moller N., Espersen F. and Lundgren J.D. 2000. Inhibition of leukocyte entry into the brain by the selectin blocker fucoidin decreases interleukin-1 (IL-1) levels but increases IL-8 levels in cerebrospinal fluid during experimental Pneumococcal meningitis in rabbits. Infect. Immun. 68: 3153-3157 https://doi.org/10.1128/IAI.68.6.3153-3157.2000
  27. Patankar S., Oehniger S., Barnett T., Williams R. L. and Clark G.F. 1993. A revised structure for fucoidan may explain some of its biological activities. J. Bioi. Chem. 268: 21770-21776
  28. Pereira M.S., Mulloy B. and Mour?o P.A. 1999. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Bioi. Chern. 274: 7656-7667 https://doi.org/10.1074/jbc.274.12.7656
  29. Riou D., Colliec-Jouault S., Pinczon du sel D., Bosch S., Siavoshian S., LeBert V., Tomasoni C., Sinquin C, Durand P. and Roussakis C. 1996. Antitumor and antiproliferative effects of a fucan extracted from Ascophyllum nodosum against a non-small-cell bronchopulmonary carcinoma line. Anticancer Res. 16: 1213-1218
  30. Sakai T., Kimura H., Kojima K., Shimanaka, K. Ikai K. and Kato I. 2003a. Marine bacterial sulfated fucoglucuronomannan (SFGM) lyase digests brown algal SFGM into trisaccharides. Mar. Biotechnol. 5: 70-78 https://doi.org/10.1007/s10126-002-0056-3
  31. Sakai, T., Ishizuka K. and Kato I. 2003. Isolation and characterization of a fucoidan-degrading marine bacterium. Mar. Biotechnol. 5: 409-416 https://doi.org/10.1007/s10126-002-0118-6
  32. Zhuang C.. Itoh H., Mizuno T. and Ito H. 1995. Antitumor active fucoidan from the brown seaweed, Umitoranoo (Sargassum thunbergii). Biosci. Biotechnol. Biochem. 59: 563-567 https://doi.org/10.1271/bbb.59.563

Cited by

  1. Algal fucoidan: structural and size-dependent bioactivities and their perspectives vol.93, pp.1, 2012, https://doi.org/10.1007/s00253-011-3666-8
  2. Purification, characterization and immunostimulating activity of water-soluble polysaccharide isolated from Capsosiphon fulvescens vol.10, pp.3, 2010, https://doi.org/10.1016/j.intimp.2009.12.011
  3. Polyphenol-rich fraction from Ecklonia cava (a brown alga) processing by-product reduces LPS-induced inflammation in vitro and in vivo in a zebrafish model vol.29, pp.2, 2014, https://doi.org/10.4490/algae.2014.29.2.165
  4. Anti-Proliferation Potential and Content of Fucoidan Extracted from Sporophyll of New Zealand Undaria pinnatifida vol.1, 2014, https://doi.org/10.3389/fnut.2014.00009
  5. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications vol.14, pp.3, 2016, https://doi.org/10.3390/md14030042
  6. Kinetics of conventional and microwave-assisted fucoidan extractions from the brown alga, Ecklonia radiata vol.27, pp.5, 2015, https://doi.org/10.1007/s10811-014-0446-8
  7. Characterization and immunostimulating activity of a water-soluble polysaccharide isolated from Haematococcus lacustris vol.16, pp.6, 2011, https://doi.org/10.1007/s12257-011-0173-9
  8. Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens vol.17, pp.6, 2015, https://doi.org/10.1007/s10126-015-9643-y
  9. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida vol.81, pp.1, 2010, https://doi.org/10.1016/j.carbpol.2010.01.052
  10. Purification and Characterization of a Fucoidanase (FNase S) from a Marine Bacterium Sphingomonas paucimobilis PF-1 vol.13, pp.7, 2015, https://doi.org/10.3390/md13074398
  11. Non-specific immune potentiating activity of fucoidan from a tropical brown algae (Phaeophyceae), Sargassum cristaefolium in tilapia (Oreochromis niloticus) vol.24, pp.2, 2016, https://doi.org/10.1007/s10499-015-9938-z
  12. Fucoidan from New Zealand Undaria pinnatifida: Monthly variations and determination of antioxidant activities vol.95, pp.1, 2013, https://doi.org/10.1016/j.carbpol.2013.02.047
  13. Low-molecular weight mannogalactofucans prevent herpes simplex virus type 1 infection via activation of Toll-like receptor 2 vol.103, 2017, https://doi.org/10.1016/j.ijbiomac.2017.05.060
  14. Macromolecules isolated from Phellinus pini fruiting body: Chemical characterization and antiviral activity vol.18, pp.6, 2010, https://doi.org/10.1007/s13233-010-0615-9
  15. Fucoidan Extracted from Undaria pinnatifida: Source for Nutraceuticals/Functional Foods vol.16, pp.9, 2018, https://doi.org/10.3390/md16090321
  16. Low Molecular Weight Mannogalactofucans Derived from Undaria pinnatifida Induce Apoptotic Death of Human Prostate Cancer Cells In Vitro and In Vivo pp.1436-2236, 2018, https://doi.org/10.1007/s10126-018-9851-3
  17. Biocatalysis of Fucodian in Undaria pinnatifida Sporophyll Using Bifidobacterium longum RD47 for Production of Prebiotic Fucosylated Oligosaccharide vol.17, pp.2, 2019, https://doi.org/10.3390/md17020117