• 제목/요약/키워드: monitoring technique

Search Result 2,200, Processing Time 0.03 seconds

A Study on The Correlations between Strategies of Technological Problem Solving and Variables related with Self-Regulation of Students in Engineering College (공과대학생의 기술적 문제해결 전략과 자아조절 관련 변인과의 상관 연구)

  • Kim Tae-Hoon
    • Journal of Engineering Education Research
    • /
    • v.8 no.2
    • /
    • pp.64-83
    • /
    • 2005
  • The purpose of this study is to investigate the correlations between technological problem solving strategies and variables related with self-regulation of students in engineering college. The subjects for this study are 120 students from engineering college. After using the problem solving strategy task and self-regulation questionnaire, they were classified into two groups, upper 25% group and bottom 25% group. The data was analyzed using the SPSS 10.0 for windows. The statistical technique used for data analysis was Pearson's correlation coefficient and t-test. The major conclusions of this study are as follows. Frist, there is positive correlation between strategies of design and self-efficacy & planning. Second, there is positive correlation between strategies of trouble shooting and self-monitoring, planning and effort. Third, especially self-efficacy, one of the self-regulation subvariables, directly affects on technological problem solving strategies.

Fabrication and Characteristics of Pd/Pt Gate MISFET Sensor for Dissolved Hydrogen in Oil (유중 용존수소 감지를 위한 Pd/Pt Gate MISFET 센서의 제조와 그 특성)

  • Baek, Tae-Sung;Lee, Jae-Gon;Choin, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.41-46
    • /
    • 1996
  • The Pd/Pt gate MISFET type hydrogen sensors, for detecting dissolved hydrogen gas in the transformer oil, were fabricated and their characteristics were investigated. These sensors including diffused resister heater and temperature monitoring diode were fabricated on the same chip by a conventional silicon process technique. The differential pair plays a role in minimizing the intrinsic voltage drift of the MISFET. To avoid the drift of the sensors induced by the hydrogen, the gate insulators of both FETs were constructed with double layers of silicon dioxide and silicon nitride. In order to eliminate the blister formation on the surface of the hydrogen sensing gate metal, Pt and Pd double metal layers were deposited on the gate insulator. The hydrogen response of the Pd/Pt gate MISFET suggests that the proposed sensor can detect the dissolved hydrogen in transformer oil with 40mV/10ppm of sensitivity and 0.14mV/day of stability.

  • PDF

Analysis of Microbial Community in the TPH-Contaminated Groundwater for Air Sparging using Terminal-Restriction Fragment Length Polymorphism (유류오염대수층 공기분사공정상의 미생물 제한효소다형성법 적용 평가)

  • Lee, Jun-Ho;Lee, Sang-Hoon;Cho, Jae-Chang;Park, Kap-Song
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.590-598
    • /
    • 2006
  • In-situ Air sparging (IAS) is a groundwater remediation technique, in which organic contaminants volatilize into air form the saturated to vadose zone. This study was carried out to evaluate the effect of sludge and soil microbial community structure on air sparging of Total Petroleum Hydrocarbons (TPH) contaminated groundwater soils. In the laboratory, diesel (10,000 mg TPH/kg) contaminated saturated soil. The Air was injected in intermittent (Q=1500 mL/min, 10 minute injection and 10 minute idle) modes. For Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of eubacterial communities in sludge of wastewater treatment plants and soil of experiment site, the 16S rDNA was amplified by Polymerase Chain Reaction (PCR) from the sludge and the soil. The obtained 16S rDNA fragments were digested with Msp I and separated by electrophoresis gel. We found various sequence types for experiment with sludge soil samples that were closely related to Agrococcus, Flavobacterium, Thermoanaerobacter, Flexibacter and Shewanella, etc, in the clone library. The results of the present study suggests that T-RFLP method may be applied as a useful tool for the monitoring in the TPH contaminated soil the fate of microorganisms in natural microbial community.

System Implementation for Dew Condensation Prevention of Distributing Boards based on the Dew Point (이슬 결로점 기반 수배전반 결로 방지 장치 제작)

  • Kim, Tae-Myoung;Jee, Suk-Kun;Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.645-650
    • /
    • 2018
  • IT-based automatic controller that control the temperature and humidity to prevent dew condensation of distributing board was designed and implemented in this paper. The dew condensation temperature was deduced from room temperature and humidity of distributing board. Based on the comparisons between the deduced dew condensation temperature and the temperature of surface condensation, the facilities that can prevent the condensation was implemented to be operated in due order. Also, the remote monitoring module to monitor operation status of controller was implemented using LoRa technique. The performances for controller operation and data transmission were validated from the transmission and operation test for dew condensation prevention. The controller can be put to good use at the facilities that requires the condensation prevention.

Development of Real time Air Quality Prediction System

  • Oh, Jai-Ho;Kim, Tae-Kook;Park, Hung-Mok;Kim, Young-Tae
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.73-78
    • /
    • 2003
  • In this research, we implement Realtime Air Diffusion Prediction System which is a parallel Fortran model running on distributed-memory parallel computers. The system is designed for air diffusion simulations with four-dimensional data assimilation. For regional air quality forecasting a series of dynamic downscaling technique is adopted using the NCAR/Penn. State MM5 model which is an atmospheric model. The realtime initial data have been provided daily from the KMA (Korean Meteorological Administration) global spectral model output. It takes huge resources of computation to get 24 hour air quality forecast with this four step dynamic downscaling (27km, 9km, 3km, and lkm). Parallel implementation of the realtime system is imperative to achieve increased throughput since the realtime system have to be performed which correct timing behavior and the sequential code requires a large amount of CPU time for typical simulations. The parallel system uses MPI (Message Passing Interface), a standard library to support high-level routines for message passing. We validate the parallel model by comparing it with the sequential model. For realtime running, we implement a cluster computer which is a distributed-memory parallel computer that links high-performance PCs with high-speed interconnection networks. We use 32 2-CPU nodes and a Myrinet network for the cluster. Since cluster computers more cost effective than conventional distributed parallel computers, we can build a dedicated realtime computer. The system also includes web based Gill (Graphic User Interface) for convenient system management and performance monitoring so that end-users can restart the system easily when the system faults. Performance of the parallel model is analyzed by comparing its execution time with the sequential model, and by calculating communication overhead and load imbalance, which are common problems in parallel processing. Performance analysis is carried out on our cluster which has 32 2-CPU nodes.

  • PDF

A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule (회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩)

  • Jin, Young-Hyun;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.

Risk Critical Point (RCP): A Quantifying Safety-Based Method Developed to Screen Construction Safety Risks

  • Soltanmohammadi, Mehdi;Saberi, Morteza;Yoon, Jin Hee;Soltanmohammadi, Khatereh;Pazhoheshfar, Peiman
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.221-235
    • /
    • 2015
  • Risk assessment is an important phase of risk management. It is the stage in which risk is measured thoroughly to achieve effective management. Some factors such as probability and impact of risk have been used in the literature related to construction projects. Because in high-rise projects safety issues are paramount, this study has tried to develop a quantifying technique that takes into account three factors: probability, impact and Safety Performance Index (SPI) where the SPI is defined as the capability of an appropriate response to reduce or limit the effect of an event after its occurrence with regard to safety pertaining to a project. Regarding risk-related literatures which cover an uncertain subject, the proposed method developed in this research is based on a fuzzy logic approach. This approach entails a questionnaire in which the subjectivity and vagueness of responses is dealt with by using triangular fuzzy numbers instead of linguistic terms. This method returns a Risk Critical Point (RCP) on a zoning chart that places risks under categories: critical, critical-probability, critical-impact, and non-critical. The high-rise project in the execution phase has been taken as a case study to confirm the applicability of the proposed method. The monitoring results showed that the RCP method has the inherent ability to be extended to subsequent applications in the phases of risk response and control.

A Study of the Strain Measurement for Al 6061-T6 Tensile Specimen using the Digital Image Correlation (디지털 이미지 상관관계를 이용한 Al 6061-T6 인장시험편의 변형률 측정에 관한 연구)

  • Kwon, Oh Heon;Kim, Sang Tae;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • A digital image correlation(DIC) method is a whole-field measurement technique that acquires surface displacements and strains from images information which characterized a random speckle as intensity grey levels. Recently years, this DIC method is being developed and used increasingly in various research. In this study, we tried to apply to aluminum alloy(Al 6061-T6) using DIC method and strain gauge. DIC results demonstrated the usefulness and ability to determine a strain. The test specimen used in this study was an aluminum alloy(Al 6061-T6, thickness 1 mm). For a strain measurement, a strain gauge was attached at the center of a specimen. A specimen was lightly sprayed with a white paint and a black dot pattern was sprayed on its fully dried white surface to obtain a random speckle. The experimental apparatus used to perform the tensile test consisted of universal dynamic tester(5 kN; T.O. Co.) under displacement speed of 0.5, 1.0 and 3.0 mm/min. A Model 5100 B Scanner(V. Co.) used to obtain a strain. A CCD camera connected to a PC uses to record the images of the specimen surface. After acquisition, the images were transferred to PC where the DIC software was implemented. An acquired image was evaluated by the DIC program. DIC method for displacement and strain was suggests and it results show a good consistent remarkably. DIC results demonstrated the usefulness and ability to determine surface strain was better than by using classical measurements. The strain field measurement using a DIC is so useful that it can be applied to map strain distributions at a full area. DIC method can evaluate a strain change so it can predict a location of fracture. The findings of the investigation suggest that the DIC method is an efficient and reliable tool for full-field monitoring and detailed damage characterization of materials.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

A systematic method from influence line identification to damage detection: Application to RC bridges

  • Chen, Zhiwei;Yang, Weibiao;Li, Jun;Cheng, Qifeng;Cai, Qinlin
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.563-572
    • /
    • 2017
  • Ordinary reinforced concrete (RC) and prestressed concrete bridges are two popular and typical types of short- and medium-span bridges that accounts for the vast majority of all existing bridges. The cost of maintaining, repairing or replacing degraded existing RC bridges is immense. Detecting the abnormality of RC bridges at an early stage and taking the protective measures in advance are effective ways to improve maintenance practices and reduce the maintenance cost. This study proposes a systematic method from influence line (IL) identification to damage detection with applications to RC bridges. An IL identification method which integrates the cubic B-spline function with Tikhonov regularization is first proposed based on the vehicle information and the corresponding moving vehicle induced bridge response time history. Subsequently, IL change is defined as a damage index for bridge damage detection, and information fusion technique that synthesizes ILs of multiple locations/sensors is used to improve the efficiency and accuracy of damage localization. Finally, the feasibility of the proposed systematic method is verified through experimental tests on a three-span continuous RC beam. The comparison suggests that the identified ILs can well match with the baseline ILs, and it demonstrates that the proposed IL identification method has a high accuracy and a great potential in engineering applications. Results in this case indicate that deflection ILs are superior than strain ILs for damage detection of RC beams, and the performance of damage localization can be significantly improved with the information fusion of multiple ILs.