• 제목/요약/키워드: monitoring of the runoff

검색결과 277건 처리시간 0.023초

EMC 방법적용을 위한 논 대표 유출률 산정 (Estimation of Representative Runoff Ratio from Paddy Field for the Application of EMC Method)

  • 최동호;정재운;윤광식;진소현;최우영;최우정;김상돈;임병진;최유진
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.943-947
    • /
    • 2010
  • Runoff ratio of paddy fields for the application of Event Mean Concentration (EMC) method was studied. To measure actual runoff ratio of paddy fields, a field monitoring was conducted for 2008 ~ 2009 period. Long-term rainfall data of four cities in major river basins were analyzed and weighting factors were developed to consider temporal and spatial variation of rainfall distribution of Korean peninsula. The observed runoff ratio ranged 0.00 ~ 1.20 and arithmetic mean were 0.25, respectively. However, the representative runoff ratio for paddy fields was determined as 0.41 according to the method suggested by National Institute of Environmental Research (NIER).

Characteristics of Pollutant Loading in Namdae-cheon Watershed

  • Choi, Jin-Kyu;Son, Jae-Gwon
    • 한국농공학회지
    • /
    • 제45권7호
    • /
    • pp.49-56
    • /
    • 2003
  • Nonpoint source pollutant loading from watershed may cause a problem to the water quality of the reservoir and stream. The characteristics of stream flow and water quality were monitored to investigate the runoff loading of the Namdae-cheon watershed from May in 1999 to October in 2003. Stage-discharge rating curve at the stream gauging site was established, and annual stream runoff of the study watershed was estimated as 499.4∼1,330.8mm during four years. The concentrations of total-nitrogen and total-phosphorus of stream water quality ranged from 0.76 to 6.95mg/L and from 0.0010 to 0.2276 mg/L, respectively, where T-N was generally higher than the water quality standard 1.0 mg/L for agricultural water use. The loads by unit generation of pollutant mass with respect to population, livestock, land use in this watershed were calculated. The runoff pollutant loadings by concentrations of total-N and total-P were estimated during study period, where the annual runoff loading of total-P was much less than the load by pollutant mass unit generation. The relations between stream discharge and water quality were analysed, and there was a high correlation for total-N but low for total-P. These results will be used to develop the monitoring techniques and water quality management system of agricultural watershed.

실트펜스와 식생밭두렁 적용을 통한 밭 비점오염 저감효과 분석을 위한 포장실험 연구 (A Plot Scale Experiment to Analysis the NPS Reduction by Silt Fence and Vegetated Ridge for Non-Irrigated Cropland)

  • 김성재;박태양;김성민;장정렬;김상민
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.19-27
    • /
    • 2012
  • The objective of this study was to test the pollutant reduction effect by the silt fence and vegetated ridge through field monitoring. The experiment plots were established with two replication and three treatments. Each plot was designed with 5 m width, 22 m length, and 3 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Cultivated crops were spring daikon and autumn chinese cabbage. Analysis of variance (ANOVA) indicated that the water quality concentration from three experiment plots were not significantly different in 5 % of significant level. The monitoring results showed that the average pollution loads reduced by silt fence compared to control were SS 75.33 %, TN 40.87 %, TP 56.58 %, BOD 52.12 %, COD 36.07 %, TOC 34.99 %; by vegetated ridge compard to control were SS 65.27 %, TN 81.80 %, TP 54.26 %, BOD 67.09 %, COD 46.55 %, TOC 43.30 %. Analysis of Spearman's rank correlation coefficient showed that BOD-SS and SS-Turbidity were highly related at the silt fence and vegetated ridge plots. In all plots, SS-Turbidity and TP-TN relations were relatively high. The monitoring results showed that the silt fence and vegetated ridge were effect method to reduce the pollutant loads from the field runoff. Long-term monitoring is required to obtain more quantitative reduction effect for diverse crops and to increase the reliability of results.

축산분뇨 농지환원을 위한 적정관리방안 (Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts)

  • 홍성구
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.

기후변화에 따른 서낙동강 시험유역에서의 수질영향 분석 (Effect of Climate Change on Water Quality in Seonakdong River Experimental Catchment)

  • 강지윤;김정민;김영도;강부식
    • 상하수도학회지
    • /
    • 제27권2호
    • /
    • pp.197-206
    • /
    • 2013
  • Recently, climate change causes climatic anomaly such as global warming, the typhoon and severe rain storm etc. and it brings damage frequently. Climate change and global warming are prevalent all over the world in this century and many researchers including hydrologists have studied on the climate change. In this study, Seonakdong river watershed in the Nakdong river basin was selected as a study area. Real-time monitoring system was used to draw the rating curves, which has 0.78 to 0.96 of $R^2$. To predict runoff change in Seonakdong river watershed caused by climate change, the change in hydrologic runoff were predicted using the watershed model, SWAT. As a result, the runoff from the Seonakdong river watershed was increased by up to 45 % in summer. Because of the non-point sources from the farmland and the urban area, the water quality will be affected by the climate change. In this study, the operating plan of the water gates in Seonakdong river will be suggested by considering the characteristics of the watershed runoff due to the climate change. The optimal watergate opening plan will solve the water pollution problems in the reservoir-like river.

건설 예정인 댐에서 유역유출과 취수형태에 따른 탁수의 거동 예측 (Simulation of Turbid Water According to Watershed Runoff and Withdrawal Type in a Constructing Reservoir)

  • 박재충;최재훈;송영일;유경미;강보승;송상진
    • 환경영향평가
    • /
    • 제19권3호
    • /
    • pp.247-257
    • /
    • 2010
  • Watershed runoff and turbid water dynamics were simulated in the Youngju Dam, being constructed. The runoff flow and suspended solids were simulated and then thermal stratification and turbid water current in the reservoir were predicted by HSPF and CE-QUAL-W2 model, respectively. Considering selective withdrawal, we hypothesized 3 withdrawal types from the dam, i.e. surface layer, middle layer and the lowest layer. The maximum concentration of SS was 400mg/L in reservoir and it was decreased by the withdrawal. The inflowed turbid water fell to 30 NTU after 12 days regardless of the withdrawal types, but the surface layer withdrawal was a better type at turbid water discharge than the others. In current environmental impact assessment(EIA), we concluded that runoff and reservoir water quality predicted by HSPF and CE-QUAL-W2 was desirable, and appropriate parameters were selected by continous monitoring after EIA.

간척지 논 농업배수 처리에 적합한 인공습지 설계 기법 (Constructed Wetland Design Method to Treat Agricultural Drainage from Tidal Reclaimed Paddy Areas)

  • 장정렬;신유리;정지연;최강원
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.4-17
    • /
    • 2011
  • The standard design methodology was suggested to construct wetland system for reducing non-point source pollution from Saemangeum reclaimed paddy land. To set for the design flow and concentrations, runoff and water quality survey were conducted during the irrigation period in 2008 at Gyehwa reclaimed paddy land located at near Saemangeum lake. It is rational that 1ha is the optimum constructed wetland size. To meet this size, the moderate drainage area of reclaimed paddy field was 50ha under the conditions that rainfall is 30mm, average runoff coefficient is 0.83, and runoff capture ratio is 0.6. At these condition, the runoff volume from 50ha was 10,520 $m^3/d$ including base flow during irrigation period. To select the optimum wetland system, several case studies were conducted by focusing on the tidal reclaimed land areas having wetland systems in Seokmun. Pond-Wetland system was selected as the standard model because of showing the highest reduction efficiency. Single variable regression equation were delivered to estimate effluent water concentrations from the designed wetland by using long-term monitoring data from the Seokmun experiment site. The effluent concentration from the designed wetland using these equation were showed moderately range.

  • PDF

농업용수 시험지구의 관측 및 물관리 특성 (Monitoring System and Irrigation Characteristics of Yi-dong Water District)

  • 김진택;이용직
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.13-16
    • /
    • 2002
  • Operation of experimental site on the rural water is necessary to research on the effective development and management of agricultural water. Hydrological data on the watershed runoff, reservoir storage, irrigation and drainage are measured and accumulated. For the monitoring system of the experimental site, four rainfall gauging stations and twenty-six water level gauging stations are established and operated. Analysis of measured data are processed for rainfall amount and intensity, water level and discharge.

  • PDF

철도지역의 비점오염원 유출특성 (Estimation of Runoff Characteristics of Nonpoint Pollutant Source in Railroad Area)

  • 이춘식;서규태;윤조희;권헌각;이재운;천세억
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.511-520
    • /
    • 2014
  • The MFFn(Mass first flush), EMCs(Event mean concentrations) and runoff loads were analyzed for various rainy events(monitoring data from 2011 to 2012) in transportation area(rail road in station). The pollutant EMCs by volume of stormwater runoff showed the BOD5 9.6 mg/L, COD 29.9 mg/L, SS 16.7 mg/L, T-N 3.271 mg/L, T-P 0.269 mg/L in the transportation areas(Railroad in station). The average pollutant loading by unit area of stormwater runoff showed the BOD5 $27.26kg/km^2$, COD $92.55kg/km^2$, SS $50.35kg/km^2$, T-N $10.13kg/km^2$ and T-P $10.13kg/km^2$ in the transportation areas. Estimated NCL-curve(Normalized cumulated-curve) was evaluated by comparison with observed MFFn. MFFn was estimated by varying n-value from 10% to 90% on the rainy events. The n-value increases, MFFn is closed to '1'. As time passed, the rainfall runoff was getting similar to ratio of pollutants accumulation. The result of a measure of the strength of the linear relationship between observed data and expected data under model was good.

비점오염원에서 발생하는 오염물질 모니터링 - 고구마·벚나무경작지의 강우유출수를 대상으로 - (Monitoring Pollutants Occurred by Non Point Sources - Rainfall Runoff from Cultivated Lands for a Sweet Potato and a Cherry Tree -)

  • 최병우;강미아
    • 대한환경공학회지
    • /
    • 제36권1호
    • /
    • pp.13-19
    • /
    • 2014
  • 청정한 물환경에 대한 기대가 높아지는 시대에서, 관리가 쉽지 않은 비점오염원에서 발생하는 오염부하량을 산정하여 합리적인 국토관리를 도모할 수 있는 기초자료를 제시하였다. 연구는 2개소의 밭경작지를 대상으로 하였으며 고구마와 벚나무를 재배하는 비점오염원으로 각각 3년 동안에 걸쳐 강우사상을 모니터링 하였다. 오염부하량에 영향을 미치는 가장 중요한 인자는 강우량으로 50 < rainfall (mm)의 강우사상에서는 100% 강우유출량이 발생하여 오염물질을 발생하였다. 그러나 30 < rainfall (mm) ${\leq}50^a$와 10 < rainfall (mm) ${\leq}30^b$에서는 강우유출수에 의한 오염부하에는 작물의 재배방법과 토양의 특성 등이 결정인자로 작용되어, 작물성장이 현저한 벚나무경작지에서 강우유출수 발생빈도는 a : 60%, b : 5%로 고구마경작지에서의 강우유출수 발생빈도보다 낮았으며, 이로 인해 오염부하량도 적었다. 반면, 고구마경작지에서의 강우유출수 발생빈도는 a : 80%, b : 15%로 나타났다.