• 제목/요약/키워드: moments of random function

검색결과 38건 처리시간 0.04초

함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증 (Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method)

  • 곽병만;허재성
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

A Lattice Distribution

  • Chung, Han-Young
    • Journal of the Korean Statistical Society
    • /
    • 제10권
    • /
    • pp.97-104
    • /
    • 1981
  • It is shown that a lattice distribution defined on a set of n lattice points $L(n,\delta) = {\delta,\delta+1,...,\delta+n-1}$ is a distribution induced from the distribution of convolution of independently and identically distributed (i.i.d.) uniform [0,1] random variables. Also the m-th moment of the lattice distribution is obtained in a quite different approach from Park and Chung (1978). It is verified that the distribution of the sum of n i.i.d. uniform [0,1] random variables is completely determined by the lattice distribution on $L(n,\delta)$ and the uniform distribution on [0,1]. The factorial mement generating function, factorial moments, and moments are also obtained.

  • PDF

DECOMPOSITION OF THE RANDOM VARIABLE WHOSE DISTRIBUTION IS THE RIESZ-NÁGY-TAKÁCS DISTRIBUTION

  • Baek, In Soo
    • 충청수학회지
    • /
    • 제26권2호
    • /
    • pp.421-426
    • /
    • 2013
  • We give a series of discrete random variables which converges to a random variable whose distribution function is the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) distribution. We show this using the correspondence theorem that if the moments coincide then their corresponding distribution functions also coincide.

한계상태식의 3차 다항식 근사를 통한 구조물 신뢰도 평가 (Structure Reliability Analysis using 3rd Order Polynomials Approximation of a Limit State Equation)

  • 이승규;김성찬;김태욱
    • 한국전산구조공학회논문집
    • /
    • 제26권3호
    • /
    • pp.183-189
    • /
    • 2013
  • 본 논문에서는 불확실성을 확률변수로 가정하고 구조물의 파손기준을 한계상태식(Limit State Equation)으로 정의하였다. 한계상태식을 Fleishman의 3차 다항식으로 근사하고 이론적인 확률 모멘트(Moments)를 계산하였다. Fleishman은 표준정규 분포 확률변수에 대해서만 3차 다항식을 제시하였으나, 본 논문에서는 이를 확장하여 베타, 감마, 균일 분포 등 다양한 확률 변수에 적용하였다. 확률 모멘트를 계산하기 위해서 누률(Cumulants)과 정규화된 한계상태식을 활용하였으며, 피어슨 시스템(Pearson System)을 통해 한계상태식의 확률분포를 근사하였다.

CONVERGENCE RATES FOR THE MOMENTS OF EXTREMES

  • Peng, Zuoxiang;Nadarajah, Saralees
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.495-510
    • /
    • 2012
  • Let $X_1$, $X_2$,${\ldots}$, $X_n$ be a sequence of independent and identically distributed random variables with common distribution function $F$. Convergence rates for the moments of extremes are studied by virtue of second order regularly conditions. A unified treatment is also considered under second order von Mises conditions. Some examples are given to illustrate the results.

Reliability and ratio in exponentiated complementary power function distribution

  • Moon, Yeung-Gil;Lee, Chang-Soo;Ryu, Se-Gi
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.955-960
    • /
    • 2009
  • As we shall dene an exponentiated complementary power function distribution, we shall consider moments, hazard rate, and inference for parameter in the distribution. And we shall consider an inference of the reliability and distributions for the quotient and the ratio in two independent exponentiated complementary power function random variables.

  • PDF

STATIONARY SOLUTIONS FOR ITERATED FUNCTION SYSTEMS CONTROLLED BY STATIONARY PROCESSES

  • Lee, O.;Shin, D.W.
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.737-746
    • /
    • 1999
  • We consider a class of discrete parameter processes on a locally compact Banach space S arising from successive compositions of strictly stationary random maps with state space C(S,S), where C(S,S) is the collection of continuous functions on S into itself. Sufficient conditions for stationary solutions are found. Existence of pth moments and convergence of empirical distributions for trajectories are proved.

  • PDF

Restricted maximum likelihood estimation of a censored random effects panel regression model

  • Lee, Minah;Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권4호
    • /
    • pp.371-383
    • /
    • 2019
  • Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.

비정규 분포에 대한 통계적 모멘트와 확률 제한조건의 민감도 해석 (Expansion of Sensitivity Analysis for Statistical Moments and Probability Constraints to Non-Normal Variables)

  • 허재성;곽병만
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1691-1696
    • /
    • 2010
  • 설계단계에서 시스템의 불확실성을 반영하려는 노력이 다양하게 이루어지고 있으며, 강건 최적설계 혹은 신뢰도 기반 최적설계는 이에 대한 대표적인 설계 방법론이다. 이러한 최적화 수식에는 성능함수의 평균, 표준편차와 확률제한조건이 목적함수와 제한조건으로 주로 활용된다. 그러므로, 이러한 통계적 특성치를 효과적으로 계산하는 것은 필수적이며, 더 나아가 최적화 과정에서 비선형 계획법이 일반적으로 활용되므로 민감도가 반드시 필요하다. 본 연구에서는 통계적 모멘트와 확률제한조건에 대해 적분 형태로 정의되는 민감도 수식을 비정규 분포로 확장하고자 한다. 얻어진 민감도 해석 결과는 통계적 모멘트와 손상확률이 설계점에서 계산된 경우, 민감도를 얻기 위해 추가로 성능함수를 계산할 필요가 없음을 보여주므로 효율성 측면에서 우수하다. 그러나, 민감도 수식이 성능함수와 확률밀도함수의 미분과정에서 얻어지는 함수의 곱으로 정의되므로, 동일한 수치적분 방법이 적용되는 경우 민감도 해석 결과는 통계적 모멘트 결과의 정확도에 미치지 못할 가능성이 있다.