• Title/Summary/Keyword: moments feature

Search Result 71, Processing Time 0.031 seconds

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

A Low-Cost Lidar Sensor based Glass Feature Extraction Method for an Accurate Map Representation using Statistical Moments (통계적 모멘트를 이용한 정확한 환경 지도 표현을 위한 저가 라이다 센서 기반 유리 특징점 추출 기법)

  • An, Ye Chan;Lee, Seung Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.103-111
    • /
    • 2021
  • This study addresses a low-cost lidar sensor-based glass feature extraction method for an accurate map representation using statistical moments, i.e. the mean and variance. Since the low-cost lidar sensor produces range-only data without intensity and multi-echo data, there are some difficulties in detecting glass-like objects. In this study, a principle that an incidence angle of a ray emitted from the lidar with respect to a glass surface is close to zero degrees is concerned for glass detection. Besides, all sensor data are preprocessed and clustered, which is represented using statistical moments as glass feature candidates. Glass features are selected among the candidates according to several conditions based on the principle and geometric relation in the global coordinate system. The accumulated glass features are classified according to the distance, which is lastly represented on the map. Several experiments were conducted in glass environments. The results showed that the proposed method accurately extracted and represented glass windows using proper parameters. The parameters were empirically designed and carefully analyzed. In future work, we will implement and perform the conventional SLAM algorithms combined with our glass feature extraction method in glass environments.

Content-Based Image Retrieval Algorithm Using HAQ Algorithm and Moment-Based Feature (HAQ 알고리즘과 Moment 기반 특징을 이용한 내용 기반 영상 검색 알고리즘)

  • 김대일;강대성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.113-120
    • /
    • 2004
  • In this paper, we propose an efficient feature extraction and image retrieval algorithm for content-based retrieval method. First, we extract the object using Gaussian edge detector for input image which is key frames of MPEG video and extract the object features that are location feature, distributed dimension feature and invariant moments feature. Next, we extract the characteristic color feature using the proposed HAQ(Histogram Analysis md Quantization) algorithm. Finally, we implement an retrieval of four features in sequence with the proposed matching method for query image which is a shot frame except the key frames of MPEG video. The purpose of this paper is to propose the novel content-based image retrieval algerian which retrieves the key frame in the shot boundary of MPEG video belonging to the scene requested by user. The experimental results show an efficient retrieval for 836 sample images in 10 music videos using the proposed algorithm.

Region-based Image Retrieval Algorithm Using Image Segmentation and Multi-Feature (영상분할과 다중 특징을 이용한 영역기반 영상검색 알고리즘)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.57-63
    • /
    • 2009
  • The rapid growth of computer-based image database, necessity of a system that can manage an image information is increasing. This paper presents a region-based image retrieval method using the combination of color(autocorrelogram), texture(CWT moments) and shape(Hu invariant moments) features. As a color feature, a color autocorrelogram is chosen by extracting from the hue and saturation components of a color image(HSV). As a texture, shape and position feature are extracted from the value component. For efficient similarity confutation, the extracted features(color autocorrelogram, Hu invariant moments, and CWT moments) are combined and then precision and recall are measured. Experiment results for Corel and VisTex DBs show that the proposed image retrieval algorithm has 94.8% Precision, 90.7% recall and can successfully apply to image retrieval system.

Rotation-Invariant Iris Recognition Method Based on Zernike Moments (Zernike 모멘트 기반의 회전 불변 홍채 인식)

  • Choi, Chang-Soo;Seo, Jeong-Man;Jun, Byoung-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.31-40
    • /
    • 2012
  • Iris recognition is a biometric technology which can identify a person using the iris pattern. It is important for the iris recognition system to extract the feature which is invariant to changes in iris patterns. Those changes can be occurred by the influence of lights, changes in the size of the pupil, and head tilting. In this paper, we propose a novel method based on Zernike Moment which is robust to rotations of iris patterns. we utilized a selection of Zernike moments for the fast and effective recognition by selecting global optimum moments and local optimum moments for optimal matching of each iris class. The proposed method enables high-speed feature extraction and feature comparison because it requires no additional processing to obtain the rotation invariance, and shows comparable performance to the well-known previous methods.

A Study on a Optical Feature Extraction using Radon Transform (Radon 변환을 이용한 광학적 특징 추출에 관한 연구)

  • Pan, J.K.;Kwon, W.H.;Park, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.86-89
    • /
    • 1987
  • In this paper, feature vectors composed of 6 features of Fourier spectrum of 2-D image at each projection angle and 7 features of invariant moments are defined. The feature are extracted by optical Fourier transformer and Radon transformer. After extracting the feature, the input pattern is recognized using the squared Mahalanobis distance.

  • PDF

2-D Conditional Moment for Recognition of Deformed Letters

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.2
    • /
    • pp.16-22
    • /
    • 2001
  • In this paper we mose a new scheme for recognition of deformed letters by extracting feature vectors based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are comprised of 2-D conditional moments which are invariant under translation, rotation, and scale of an image. The Algorithm for pattern recognition of deformed letters contains two parts: the extraction of feature vector and the recognition process. (i) We extract feature vector which consists of an improved 2-D conditional moments on the basis of estimated conditional Gibbs distribution for an image. (ii) In the recognition phase, the minimization of the discrimination cost function for a deformed letters determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, recognition experiments with a generated document was conducted. on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 96%.

  • PDF

An Improved 2-D Moment Algorithm for Pattern Classification

  • Yoon, myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 1999
  • We propose a new algorithm for pattern classification by extracting feature vectors based on Gibbs distributions which are well suited for representing the characteristic of an images. The extracted feature vectors are comprised of 2-D moments which are invariant under translation rotation, and scale of the image less sensitive to noise. This implementation contains two puts: feature extraction and pattern classification First of all, we extract feature vector which consists of an improved 2-D moments on the basis of estimated Gibbs distribution Next, in the classification phase the minimization of the discrimination cost function for a specific pattern determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on SUN ULTRA 10 Workstation Experiment results reveal that the proposed scheme had high classification rate over 98%.

  • PDF

Fast Computation of Zernike Moments Using Three Look-up Tables

  • Kim, Sun-Gi;Kim, Whoi-Yul;Kim, Young-Sum;Park, Chee-Hang
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.156-161
    • /
    • 1997
  • Zernike moments have been one of the most commonly used feature vectors for recognizing rotated patterns due to its rotation invariant characteristics. In order to reduce its expensive computational cost, several methods have been proposed to lower the complexity. One of the methods proposed by mukundan and K. R. Ramakrishnan[1], however, is not rotation invariant. In this paper, we propose another method that not only reduces the computational cost but preserves the rotation invariant characteristics. In the experiment, we compare our method with others, in terms of computing time and the accuracy of moment feature at different rotational angle of an object in image.

  • PDF

Motion classification using distributional features of 3D skeleton data

  • Woohyun Kim;Daeun Kim;Kyoung Shin Park;Sungim Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.551-560
    • /
    • 2023
  • Recently, there has been significant research into the recognition of human activities using three-dimensional sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models. This study introduces a novel feature selection method for this data and analyzes it using machine learning models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are required to address the classification challenge. In this research, we propose using the first four moments as predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities. The results show that the accuracy of our approach outperforms existing methods on average across different classifiers.