• Title/Summary/Keyword: moment-curvature method

Search Result 110, Processing Time 0.022 seconds

Book Remodeling Analysis of Femur Using Hybrid Beam Theory (보 이론을 이용한 대퇴골 재생성의 해석)

  • Kim, Seung-Jong;Jeong, Jae-Yeon;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.329-337
    • /
    • 2000
  • An investigation has been performed to develop an analysis tool based on a nonlinear beam theory, which can be used to predict the long-term behavior of an artificial hip joint. The nonlinear behav ior of the femur arise from the coupled dependence of the bone density and the mechanical properties on each other. The beam theory together with its numerical algorithm is developed to take into account the nonlinear bone remodeling process of the femur that is long enough to be assumed as a beam. A piecewise linear curve for the bone remodeling rate is used in the bone remodeling theory and the surface area density of bone is modeled as the third order polynomial function of bone density. At each section of the beam, a constant curvature is assumed and the longitudinal strains are also assumed to vary linearly across the section. The Newton-Rhapson iteration method is used to solve the nonlinear equations for each cross section of the bone and a backward method is used to march along the time. The density and the remodeling signal ar, calculated along with time for the various time steps, and the developed beam theory has been verified by comparing with the results of finite element analysis of a remodeling bone with an artificial hip joint of titanium prosthesis subjected to uni-axial loads and pure bending moment. It is concluded that the developed beam theory can be used to predict the long-term behavior of the femur and thus to design the artificial hip prosthesis.

Optimum Design of Radial Gate (회전식 수문의 최적 설계)

  • 권영두;권순범;박창규;윤영중
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.267-276
    • /
    • 2001
  • On the basis of structural analysis of the radial gate(that is, Tainter gate), this paper focuses on the optimization of the moment distribution according to the location of the arm of the radial gate. In spite of its importance from economical view point, we could hardly find the study on the optimum design of radial gate. Accordingly, the present study identifies the optimum section modulus for a radial arm along with the optimum position for 2 of 3 radial arms with a convex cylindrical skin plate relative to a given radius of the skin plate curvature, pivot point, water depth, ice pressure, etc. These optimum measurements are then compared with previously constructed radial gates. The results indicate that the optimum section modulus vague for a radial arm was appreciably smaller than the previously constructed examples.

  • PDF

A Study on Inelastic Whipping Responses in a Navy Ship by Underwater Explosion (수중 폭발에 의한 함체의 비탄성 휘핑 응답에 관한 연구)

  • Kim, Hyunwoo;Seo, Jae Hoon;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.400-406
    • /
    • 2021
  • The primary effect of the far-field underwater explosion (UNDEX) is the whipping of the ship hull girder. This paper aims to verify why inelastic effects should be considered in the whipping response estimations from the UNDEX simulations. A navy ship was modeled using Timoshenko beam elements over the ship length uniformly keeping the constant midship section modulus. The transient UNDEX pressure was produced using two types of the Geers-Hunter doubly-asymptotic models: compressible and incompressible fluids. Because the UNDEX model based on incompressible fluid assumption provided more increased fluid volume acceleration in the bubble phase, the incompressible fluid-based UNDEX model was adopted for the inelastic whipping response analyses. The non-linear hull girder bending moment-curvature curve was used to embed inelastic effects in the UNDEX analyses where the Smith method was applied to derive the non-linear stiffness. We assumed two stand-off distances to see more apparent inelastic effects: 40.5 m and 35.5 m. In the case of the 35.5 m stand-off distance, there was a statistically significant inelastic effect in terms of the average of peak moments and the average exceeding proportional limit moments. For the conservative design of a naval ship under UNDEX, it is recommended to use incompressible fluid. In the viewpoint of cost-effective naval ship design, the inelastic effects should be taken into account.

Computational Analysis of Three-Dimensional Turbulent Flow Around Magnetically Levitated Train Configurations in Elevated Track Proximity (고가궤도에 근접한 자기부상열차 형상 주위의 3차원 난류유동에 대한 수치해석)

  • Maeng, J.S.;Yang, S.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.9-25
    • /
    • 1994
  • In the present study, the Reynolds-averaged Navier-Stokes equations, together with the equations of the $k-{\varepsilon}$ model of turbulence, were solved numerically in a general body-fitted coordinate system for three-dimensional turbulent flows around the six basic shapes of the magnetically levitated train(MAGLEV). The numerical computations were conducted on the MAGLEV model configurations to provide information on shapes of this type very near the elevated track at a constant Reynolds number of $1.48{\times}10^{6}$ based on the body length. The coordinate system was generated by numerically solving a set of Poisson equations. The convective transport equations were discretized using the finite-analytic scheme which employed analytic solutions of the locally-linearized equations. A time marching algorithm was employed to enable future extensions to be made to handle unsteady and fully-elliptic problems. The pressure-velocity coupling was treated with the SIMPLER-algorithm. Of particular interests were wall effect by the elevated track on the aerodynamic forces and flow characteristics of the six models calculated. The results indicated that the half-circle configuration with extended sides and with smooth curvature of sides was desirable because of the low aerodynamic forces and pitching moment. And it was found that the separation bubble was occured at wake region in near the elevated track.

  • PDF

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

Seismic P-$\Delta$ Effects of Slender RC Columns in Earthquake Analysis (지진하중을 받는 철근콘크리트 장주의 P-$\Delta$ 효과)

  • Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.375-387
    • /
    • 2006
  • Different from the previous studies which investigated seismic P-$\Delta$ effect in slender columns though comparison of response spectra according to stability coefficients obtained from the analyses based on the assumed moment-curvature relationship, the axial force and P-$\Delta$ effect in RC columns are investigated on the basis of the layered section method which can effectively consider the changes of stiffness and yield strength due to the application of axial force in RC members. Practical ranges of slenderness and stability coefficient are assumed, and sixty sets of horizontal/vertical earthquake inputs are used in the analysis. From the parametric study, it is noted that the maximum deformation of the slender RC column is hardly affected by P-$\Delta$ effect or vortical earthquake but dominantly affected by the applied axial force. Therefore, it can be concluded that no additional consideration for the P-$\Delta$ effect and vortical earthquake is required in the seismic design of a slender RC column if the axial force effect is taken into account in the analysis and design procedures.

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

Prediction of Structural Behavior of FRP Rebar Reinforced Concrete Slab based on the Definition of Limit State (한계상태 정의에 따른 FRP Rebar 보강 콘크리트 슬래브의 구조거동 예측)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The failure mode of concrete reinforced with FRP is defined as the concrete crushing and the fiber rupture and the definition of limit state is a slightly different according to the design methods. It is relatively difficult to predict of FRP reinforced concrete because the mechanical properties of fibers are quite depending on its of fibers. The design code by ACI440 committee, which has been developed mainly on GFRP having low modulus of elasticity, is widely used, but the applicability on other FRPs of this code has not been sufficiently verified. In addition, the ultimate and serviceability limit state based on the ACI440 are comparatively difficult to predict the behavior of member with the 0.8~1.2 𝜌b because crushing and rupturing failure can be occurred simultaneously is in this region of reinforcement ratio, and predicted deflection is too sensitive according to the loading condition. Therefore, in this study, reliability and convenience of the prediction of structural performance by design methods such as ACI440 and MC90 concept, respectively, were examined through the experimental results and literature review of the beam and slab with the reinforcement ratio of 0.8 ~ 1.4. As a result of the analysis, it can be applied to the FRP reinforced structure in the case of the simple moment-curvature formula (LIM-MC) of Model Code, and the limit state design method based on the EC2 is more reliable than the ultimate strength design method.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.